A Bhattacharyya Coefficient-Based Framework for Noise Model-Aware Random Walker Image Segmentation

Dominik Drees, Florian Eilers, Ang Bian, Xiaoyi Jiang
{"title":"A Bhattacharyya Coefficient-Based Framework for Noise Model-Aware Random Walker Image Segmentation","authors":"Dominik Drees, Florian Eilers, Ang Bian, Xiaoyi Jiang","doi":"10.48550/arXiv.2206.00947","DOIUrl":null,"url":null,"abstract":". One well established method of interactive image segmentation is the random walker algorithm. Considerable research on this family of segmentation methods has been continuously conducted in recent years with numerous applications. These methods are common in using a simple Gaussian weight function which depends on a parameter that strongly influences the segmentation performance. In this work we propose a general framework of deriving weight functions based on probabilistic modeling. This framework can be concretized to cope with virtually any well-defined noise model. It eliminates the critical parameter and thus avoids time-consuming parameter search. We derive the specific weight functions for common noise types and show their superior performance on synthetic data as well as different biomedical image data (MRI images from the NYU fastMRI dataset, larvae images acquired with the FIM technique). Our framework can also be used in multiple other applications, e.g., the graph cut algorithm and its extensions.","PeriodicalId":221267,"journal":{"name":"German Conference on Pattern Recognition","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"German Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.00947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. One well established method of interactive image segmentation is the random walker algorithm. Considerable research on this family of segmentation methods has been continuously conducted in recent years with numerous applications. These methods are common in using a simple Gaussian weight function which depends on a parameter that strongly influences the segmentation performance. In this work we propose a general framework of deriving weight functions based on probabilistic modeling. This framework can be concretized to cope with virtually any well-defined noise model. It eliminates the critical parameter and thus avoids time-consuming parameter search. We derive the specific weight functions for common noise types and show their superior performance on synthetic data as well as different biomedical image data (MRI images from the NYU fastMRI dataset, larvae images acquired with the FIM technique). Our framework can also be used in multiple other applications, e.g., the graph cut algorithm and its extensions.
基于Bhattacharyya系数的噪声感知随机沃克图像分割框架
. 一种成熟的交互式图像分割方法是随机漫步器算法。近年来,对这类分割方法进行了大量的研究,并得到了大量的应用。这些方法通常用于使用简单的高斯权重函数,该函数依赖于对分割性能有强烈影响的参数。在这项工作中,我们提出了一个基于概率建模的权重函数推导的一般框架。这个框架可以具体化,以处理几乎任何定义良好的噪声模型。它消除了关键参数,从而避免了耗时的参数搜索。我们得出了常见噪声类型的特定权重函数,并展示了它们在合成数据以及不同生物医学图像数据(来自NYU fastMRI数据集的MRI图像,用FIM技术获得的幼虫图像)上的优越性能。我们的框架也可以用于多个其他应用程序,例如图切算法及其扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信