A Comparative Study of Machine Learning Approaches on Learning Management System Data

D. Oreški, Goran Hajdin
{"title":"A Comparative Study of Machine Learning Approaches on Learning Management System Data","authors":"D. Oreški, Goran Hajdin","doi":"10.1109/ICCAIRO47923.2019.00029","DOIUrl":null,"url":null,"abstract":"This paper addresses the analysis of machine learning (ML) effectiveness in learning analytics context. Four different machine learning approaches are evaluated. The results offer information about the usefulness of these approaches and help to decide which of the approaches is the most promising one in learning analytics application. Results substantiate that the neural networks ML model trained on our learning management system (LMS) data exhibits the best performance for predicting the students' academic performance. In our future research, predictive model results will be explained within a pedagogical context in order to be used as part of student support mechanism.","PeriodicalId":297342,"journal":{"name":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIRO47923.2019.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper addresses the analysis of machine learning (ML) effectiveness in learning analytics context. Four different machine learning approaches are evaluated. The results offer information about the usefulness of these approaches and help to decide which of the approaches is the most promising one in learning analytics application. Results substantiate that the neural networks ML model trained on our learning management system (LMS) data exhibits the best performance for predicting the students' academic performance. In our future research, predictive model results will be explained within a pedagogical context in order to be used as part of student support mechanism.
学习管理系统数据中机器学习方法的比较研究
本文讨论了学习分析背景下机器学习(ML)有效性的分析。评估了四种不同的机器学习方法。结果提供了有关这些方法的有用性的信息,并有助于确定哪种方法在学习分析应用中最有前途。结果表明,在学习管理系统(LMS)数据上训练的神经网络机器学习模型在预测学生学业成绩方面表现最佳。在未来的研究中,我们将在教学背景下解释预测模型的结果,以便作为学生支持机制的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信