Island-based whale optimisation algorithm for continuous optimisation problems

Bilal H. Abed-alguni, Ahmad F. Klaib, K. Nahar
{"title":"Island-based whale optimisation algorithm for continuous optimisation problems","authors":"Bilal H. Abed-alguni, Ahmad F. Klaib, K. Nahar","doi":"10.1504/ijris.2019.10025171","DOIUrl":null,"url":null,"abstract":"The whale optimisation algorithm (WOA) is a newly proposed evolutionary algorithm that uses a simulation model based on the bubble-net hunting mechanism of humpback whales to find solutions for different classes of optimisation problems. WOA may occasionally converge to suboptimal solutions because of the loss of diversity in its population of candidate solutions. The island model is a distributed approach that is commonly used to control the population diversity in evolutionary algorithms. This paper introduces an improved version of WOA namely island-based whale optimisation algorithm (iWOA) that incorporates the island model into WOA. The iWOA algorithm was compared to well-known optimisation algorithms using 18 standard benchmark functions. The simulation results indicate that iWOA improves the accuracy of results compared to WOA and other popular evolutionary algorithms. In addition, the sensitivity analysis of iWOA to its parameters indicates that its convergence behaviour is sensitive to the parameters of the island model.","PeriodicalId":360794,"journal":{"name":"Int. J. Reason. based Intell. Syst.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Reason. based Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijris.2019.10025171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The whale optimisation algorithm (WOA) is a newly proposed evolutionary algorithm that uses a simulation model based on the bubble-net hunting mechanism of humpback whales to find solutions for different classes of optimisation problems. WOA may occasionally converge to suboptimal solutions because of the loss of diversity in its population of candidate solutions. The island model is a distributed approach that is commonly used to control the population diversity in evolutionary algorithms. This paper introduces an improved version of WOA namely island-based whale optimisation algorithm (iWOA) that incorporates the island model into WOA. The iWOA algorithm was compared to well-known optimisation algorithms using 18 standard benchmark functions. The simulation results indicate that iWOA improves the accuracy of results compared to WOA and other popular evolutionary algorithms. In addition, the sensitivity analysis of iWOA to its parameters indicates that its convergence behaviour is sensitive to the parameters of the island model.
基于岛屿的鲸鱼优化算法的连续优化问题
鲸鱼优化算法(whale optimization algorithm, WOA)是一种新提出的进化算法,它使用基于座头鲸气泡网捕猎机制的模拟模型来寻找不同类别优化问题的解决方案。WOA可能偶尔收敛到次优解,因为它的候选解群体失去了多样性。孤岛模型是进化算法中常用的一种控制种群多样性的分布式方法。本文介绍了WOA的改进版本,即基于岛屿的鲸鱼优化算法(iWOA),该算法将岛屿模型纳入到WOA中。使用18个标准基准函数将iWOA算法与众所周知的优化算法进行了比较。仿真结果表明,与WOA和其他流行的进化算法相比,iWOA提高了结果的准确性。此外,iWOA对其参数的敏感性分析表明,其收敛行为对岛屿模型参数敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信