Sim-Watchdog: Leveraging Temporal Similarity for Anomaly Detection in Dynamic Graphs

Guanhua Yan, S. Eidenbenz
{"title":"Sim-Watchdog: Leveraging Temporal Similarity for Anomaly Detection in Dynamic Graphs","authors":"Guanhua Yan, S. Eidenbenz","doi":"10.1109/ICDCS.2014.24","DOIUrl":null,"url":null,"abstract":"Graphs are widely used to characterize relationships or information flows among entities in large networks or distributed systems. In this work, we propose a systematic framework that leverages temporal similarity inherent in dynamic graphs for anomaly detection. This framework relies on the Neyman-Pearson criterion to choose similarity measures with high discriminative power for online anomaly detection in dynamic graphs. We formulate the problem rigorously, and after establishing its inapproximibility result, we develop a greedy algorithm for similarity measure selection. We apply this framework to dynamic graphs generated from email communications among thousands of employees in a large research institution and demonstrate that it works effectively on a set of more than 100 candidate graph similarity measures.","PeriodicalId":170186,"journal":{"name":"2014 IEEE 34th International Conference on Distributed Computing Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 34th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2014.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Graphs are widely used to characterize relationships or information flows among entities in large networks or distributed systems. In this work, we propose a systematic framework that leverages temporal similarity inherent in dynamic graphs for anomaly detection. This framework relies on the Neyman-Pearson criterion to choose similarity measures with high discriminative power for online anomaly detection in dynamic graphs. We formulate the problem rigorously, and after establishing its inapproximibility result, we develop a greedy algorithm for similarity measure selection. We apply this framework to dynamic graphs generated from email communications among thousands of employees in a large research institution and demonstrate that it works effectively on a set of more than 100 candidate graph similarity measures.
Sim-Watchdog:利用时间相似性在动态图中进行异常检测
图被广泛用于描述大型网络或分布式系统中实体之间的关系或信息流。在这项工作中,我们提出了一个系统框架,利用动态图中固有的时间相似性进行异常检测。该框架依靠Neyman-Pearson准则选择具有高判别能力的相似度量,用于动态图的在线异常检测。我们对该问题进行了严格的形式化,在建立了其不近似性结果之后,提出了一种贪婪的相似度量选择算法。我们将此框架应用于一家大型研究机构中数千名员工之间的电子邮件通信生成的动态图,并证明它在一组超过100个候选图相似性度量上有效地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信