Real Schottky parametrizations

R. Hidalgo
{"title":"Real Schottky parametrizations","authors":"R. Hidalgo","doi":"10.1080/02781070500139807","DOIUrl":null,"url":null,"abstract":"A real algebraic curve of genus g is a pair (S,τ), where S is a closed Riemann surface of genus g and τ :S → S is an anticonformal involution. It was already known to Koebe that each real algebraic curve for which τ is a reflection can be uniformized by a real Schottky group, that is, a Schottky group that keeps invariant the unit circle. In the case that τ is an imaginary reflection, we produce uniformizations by either (i) real noded Klein–Schottky groups (once we have chosen some points on S as phantom nodes) or (ii) Klein–Schottky groups. We also give explicit descriptions of the real algebraic curves of genus 2 in terms of these types of uniformizing groups.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070500139807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A real algebraic curve of genus g is a pair (S,τ), where S is a closed Riemann surface of genus g and τ :S → S is an anticonformal involution. It was already known to Koebe that each real algebraic curve for which τ is a reflection can be uniformized by a real Schottky group, that is, a Schottky group that keeps invariant the unit circle. In the case that τ is an imaginary reflection, we produce uniformizations by either (i) real noded Klein–Schottky groups (once we have chosen some points on S as phantom nodes) or (ii) Klein–Schottky groups. We also give explicit descriptions of the real algebraic curves of genus 2 in terms of these types of uniformizing groups.
真正的肖特基参数化
g属的实代数曲线是一对(S,τ),其中S是g属的闭黎曼曲面,而τ:S→S是一个反共形对合。Koebe已经知道,每一个以τ为反射的实代数曲线都可以被一个实肖特基群均匀化,即一个保持单位圆不变的肖特基群。在τ是虚反射的情况下,我们通过(i)实节点Klein-Schottky群(一旦我们选择S上的一些点作为虚节点)或(ii) Klein-Schottky群产生均匀化。我们还用这些均化群的类型给出了2属的实代数曲线的显式描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信