Multi-label Feature Selection based on Label-specific Features

Zhijian Yin, Xingxing Li, Hualin Zhan
{"title":"Multi-label Feature Selection based on Label-specific Features","authors":"Zhijian Yin, Xingxing Li, Hualin Zhan","doi":"10.1109/SDPC.2019.00137","DOIUrl":null,"url":null,"abstract":"Multi-label learning algorithm handles cases in which each sample is related with several labels synchronously. As is known to all, each label might possess its own peculiarities, such as LIFT algorithm, i.e. multi-label learning with Label-specific Features. It constructs feature by performing cluster techniques based on negative and positive training samples of each label. However, the main drawback of this kind of algorithm is the large amounts of irrelevant features or redundant features in its feature space. To solve this problem, this paper puts forward an effective algorithm named LEFS, i.e. multi-label Feature Selection based on Label-specific features with fuzzy Entropy. The approaches proposed are examined on the two realistic multi-label benchmark data sets, which are compared with several multi-label learning approaches. A few features are selected from original features to fed classifier, but they remain the same or even slightly improve accuracy from 91.82% to 92.49% on data set- Medical. Results of another data sets are similar to that of the Medical. Experiment results show that these approaches can not only decrease the dimension of the construct features, but also gain an effective classification performance compared with three well-established multi-label learning approaches.","PeriodicalId":403595,"journal":{"name":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDPC.2019.00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-label learning algorithm handles cases in which each sample is related with several labels synchronously. As is known to all, each label might possess its own peculiarities, such as LIFT algorithm, i.e. multi-label learning with Label-specific Features. It constructs feature by performing cluster techniques based on negative and positive training samples of each label. However, the main drawback of this kind of algorithm is the large amounts of irrelevant features or redundant features in its feature space. To solve this problem, this paper puts forward an effective algorithm named LEFS, i.e. multi-label Feature Selection based on Label-specific features with fuzzy Entropy. The approaches proposed are examined on the two realistic multi-label benchmark data sets, which are compared with several multi-label learning approaches. A few features are selected from original features to fed classifier, but they remain the same or even slightly improve accuracy from 91.82% to 92.49% on data set- Medical. Results of another data sets are similar to that of the Medical. Experiment results show that these approaches can not only decrease the dimension of the construct features, but also gain an effective classification performance compared with three well-established multi-label learning approaches.
基于标签特定特征的多标签特征选择
多标签学习算法处理每个样本同时与多个标签相关的情况。众所周知,每个标签可能都有自己的特性,例如LIFT算法,即具有标签特定特征的多标签学习。它通过基于每个标签的负训练样本和正训练样本执行聚类技术来构建特征。然而,这种算法的主要缺点是其特征空间中存在大量的不相关特征或冗余特征。为了解决这一问题,本文提出了一种有效的LEFS算法,即基于模糊熵的标签特定特征的多标签特征选择算法。在两个真实的多标签基准数据集上对所提出的方法进行了检验,并与几种多标签学习方法进行了比较。从原始特征中选择一些特征来馈送分类器,但在数据集- Medical上,它们保持不变甚至略微提高准确率,从91.82%提高到92.49%。其他数据集的结果与医学的结果相似。实验结果表明,与已有的三种多标签学习方法相比,这些方法不仅可以降低构造特征的维数,而且可以获得有效的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信