Classification of Respiration Sounds Using Deep Pre-trained Audio Embeddings

Carlos A. Galindo Meza, Juan A. del Hoyo Ontiveros, P. López-Meyer
{"title":"Classification of Respiration Sounds Using Deep Pre-trained Audio Embeddings","authors":"Carlos A. Galindo Meza, Juan A. del Hoyo Ontiveros, P. López-Meyer","doi":"10.1109/LA-CCI48322.2021.9769831","DOIUrl":null,"url":null,"abstract":"In this work we present the use of an end-to-end deep learning based pre-trained audio embeddings generator, and apply it to the purpose of classification of respiration sounds. With this approach, there is no need to pre-compute spectral representations, e.g. MFCC or filterbanks, since the classification model uses raw audio as the input. Transfer learning was used to train an audio classifier for sounds of respiratory cycles as defined in the ICBHI 2017 challenge. The results on this dataset show that this end-to-end model represents a viable alternative to more common spectral-based classifiers, while achieving state-of-the-art performance.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we present the use of an end-to-end deep learning based pre-trained audio embeddings generator, and apply it to the purpose of classification of respiration sounds. With this approach, there is no need to pre-compute spectral representations, e.g. MFCC or filterbanks, since the classification model uses raw audio as the input. Transfer learning was used to train an audio classifier for sounds of respiratory cycles as defined in the ICBHI 2017 challenge. The results on this dataset show that this end-to-end model represents a viable alternative to more common spectral-based classifiers, while achieving state-of-the-art performance.
使用深度预训练音频嵌入的呼吸声音分类
在这项工作中,我们介绍了基于端到端深度学习的预训练音频嵌入生成器的使用,并将其应用于呼吸声音的分类。使用这种方法,不需要预先计算频谱表示,例如MFCC或滤波器组,因为分类模型使用原始音频作为输入。迁移学习用于训练ICBHI 2017挑战赛中定义的呼吸周期声音的音频分类器。该数据集的结果表明,这种端到端模型代表了更常见的基于光谱的分类器的可行替代方案,同时实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信