Partition of unity-based discontinuous finite elements: GFEM, PUFEM, XFEM

A. Simone
{"title":"Partition of unity-based discontinuous finite elements: GFEM, PUFEM, XFEM","authors":"A. Simone","doi":"10.1080/17747120.2007.9692976","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper we review some basic notions of partition of unity-based discontinuous finite elements showing their relation to the Generalized Finite Element Method. A minimal one-dimensional example illustrates some of the issues related to the computer implementation of the method and highlights the relative simplicity of the approach. The ability of the approach in describing displacement discontinuities independently of the finite element mesh is shown in a classical crack propagation problem in an elastic medium. We also illustrate some limitations of this method when used in conjunction with the dummy stiffness approach.","PeriodicalId":368904,"journal":{"name":"Revue Européenne de Génie Civil","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue Européenne de Génie Civil","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17747120.2007.9692976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

ABSTRACT In this paper we review some basic notions of partition of unity-based discontinuous finite elements showing their relation to the Generalized Finite Element Method. A minimal one-dimensional example illustrates some of the issues related to the computer implementation of the method and highlights the relative simplicity of the approach. The ability of the approach in describing displacement discontinuities independently of the finite element mesh is shown in a classical crack propagation problem in an elastic medium. We also illustrate some limitations of this method when used in conjunction with the dummy stiffness approach.
基于单位的不连续有限元划分:GFEM、PUFEM、XFEM
本文综述了基于单位的不连续有限元划分的一些基本概念,并说明了它们与广义有限元法的关系。一个最小的一维示例说明了与该方法的计算机实现相关的一些问题,并突出了该方法的相对简单性。在一个经典的弹性介质裂纹扩展问题中,证明了该方法独立于有限元网格描述位移不连续面的能力。我们还说明了当与假人刚度方法结合使用时,这种方法的一些局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信