Graph-Based Sparse Matrix Regression for 2D Feature Selection

Junyuli, Haoliang Yuan, L. L. Lai, Houqing Zheng, W. Qian, Xiaoming Zhou
{"title":"Graph-Based Sparse Matrix Regression for 2D Feature Selection","authors":"Junyuli, Haoliang Yuan, L. L. Lai, Houqing Zheng, W. Qian, Xiaoming Zhou","doi":"10.1109/ICWAPR.2018.8521279","DOIUrl":null,"url":null,"abstract":"It is common to perform feature selection for pattern recognition and image processing. However, most of conventional methods often convert the image matrix into a vector for feature selection, which fails to consider the spatial location of image. To address this issue, we propose a graph-based sparse matrix regression for feature selection on matrix. We incorporate a graph regularization term into the objective function of the sparse matrix regression model. The role of this graph structure is to make the matrix samples sharing the same labels keep close together in the transformed space. Extensive experimental results can demenstrate the effectiveness of our proposed method.","PeriodicalId":385478,"journal":{"name":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2018.8521279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is common to perform feature selection for pattern recognition and image processing. However, most of conventional methods often convert the image matrix into a vector for feature selection, which fails to consider the spatial location of image. To address this issue, we propose a graph-based sparse matrix regression for feature selection on matrix. We incorporate a graph regularization term into the objective function of the sparse matrix regression model. The role of this graph structure is to make the matrix samples sharing the same labels keep close together in the transformed space. Extensive experimental results can demenstrate the effectiveness of our proposed method.
基于图的稀疏矩阵回归二维特征选择
在模式识别和图像处理中进行特征选择是很常见的。然而,传统的方法大多是将图像矩阵转换成矢量进行特征选择,没有考虑图像的空间位置。为了解决这个问题,我们提出了一种基于图的稀疏矩阵回归,用于矩阵的特征选择。我们在稀疏矩阵回归模型的目标函数中加入了一个图正则化项。这种图结构的作用是使具有相同标签的矩阵样本在变换空间中保持紧密。大量的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信