A. Boltasseva, C. DeVault, V. Bruno, S. Saha, Z. Kudyshev, A. Dutta, S. Vezzoli, M. Ferrera, D. Faccio, V. Shalaev
{"title":"Through the (conducting) looking-glass: transparent conducting oxides for nanophotonic applications (Conference Presentation)","authors":"A. Boltasseva, C. DeVault, V. Bruno, S. Saha, Z. Kudyshev, A. Dutta, S. Vezzoli, M. Ferrera, D. Faccio, V. Shalaev","doi":"10.1117/12.2512275","DOIUrl":null,"url":null,"abstract":"Transparent Conducting Oxide (TCO) materials are degenerately-doped, wide-bandgap semiconductors which exhibit simultaneous high-conductivity and visible transparency. These unique properties are well known and frequently exploited for technologies such as touch-screen devices. In recent years, TCOs have been recognized as a promising material platform for nanophotonic devices, namely because of their simple, compatible fabrication, low-losses, dynamic modulation, and novel low-index properties. In this talk, I will highlight recent progress in the field of TCO-based nanophotonics, share our ongoing results and observations, and discuss future research challenges and directions. In particular, I will discuss our progress in developing metal-dielectric hybrid metasurfaces which incorporate TCOs for all-optical, ultrafast switching. Here, we incorporate defect-rich zinc oxide with a refractory titanium nitride metasurface for efficient light modulation at near-terahertz switching frequencies. My talk will also focus on TCO films for studying and observing low-index phenomena. Our recent work with aluminum-doped zinc oxide films demonstrates the ability for low-index materials to both enhance negative refraction and engender strongly coupled plasmonic systems with large room-temperature Rabi frequencies. Our work signifies the strong potential for incorporating transparent conducting oxides into plasmonic and nanophotonic devices to provide advances toward practical technologies and depth in scientific understanding.","PeriodicalId":106257,"journal":{"name":"Oxide-based Materials and Devices X","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxide-based Materials and Devices X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2512275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transparent Conducting Oxide (TCO) materials are degenerately-doped, wide-bandgap semiconductors which exhibit simultaneous high-conductivity and visible transparency. These unique properties are well known and frequently exploited for technologies such as touch-screen devices. In recent years, TCOs have been recognized as a promising material platform for nanophotonic devices, namely because of their simple, compatible fabrication, low-losses, dynamic modulation, and novel low-index properties. In this talk, I will highlight recent progress in the field of TCO-based nanophotonics, share our ongoing results and observations, and discuss future research challenges and directions. In particular, I will discuss our progress in developing metal-dielectric hybrid metasurfaces which incorporate TCOs for all-optical, ultrafast switching. Here, we incorporate defect-rich zinc oxide with a refractory titanium nitride metasurface for efficient light modulation at near-terahertz switching frequencies. My talk will also focus on TCO films for studying and observing low-index phenomena. Our recent work with aluminum-doped zinc oxide films demonstrates the ability for low-index materials to both enhance negative refraction and engender strongly coupled plasmonic systems with large room-temperature Rabi frequencies. Our work signifies the strong potential for incorporating transparent conducting oxides into plasmonic and nanophotonic devices to provide advances toward practical technologies and depth in scientific understanding.