Quantal Correlated Equilibrium in Normal Form Games

Jakub Černý, Bo An, A. N. Zhang
{"title":"Quantal Correlated Equilibrium in Normal Form Games","authors":"Jakub Černý, Bo An, A. N. Zhang","doi":"10.1145/3490486.3538350","DOIUrl":null,"url":null,"abstract":"Correlated equilibrium is an established solution concept in game theory describing a situation when players condition their strategies on external signals produced by a correlation device. In recent years, the concept has begun gaining traction also in general artificial intelligence because of its suitability for studying coordinated multi-agent systems. Yet the original formulation of correlated equilibrium assumes entirely rational players and hence fails to capture the subrational behavior of human decision-makers. We investigate the analogue of quantal response for correlated equilibrium, which is among the most commonly used models of bounded rationality. We coin the solution concept the quantal correlated equilibrium and study its relation to quantal response and correlated equilibria. The definition corroborates with prior conception as every quantal response equilibrium is a quantal correlated equilibrium, and correlated equilibrium is its limit as quantal responses approach the best response. We prove the concept remains PPAD-hard but searching for an optimal correlation device is beneficial for the signaler. To this end, we introduce a homotopic algorithm that simultaneously traces the equilibrium and optimizes the signaling distribution. Empirical results on one structured and one random domain show that our approach is sufficiently precise and several orders of magnitude faster than a state-of-the-art non-convex optimization solver.","PeriodicalId":209859,"journal":{"name":"Proceedings of the 23rd ACM Conference on Economics and Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490486.3538350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Correlated equilibrium is an established solution concept in game theory describing a situation when players condition their strategies on external signals produced by a correlation device. In recent years, the concept has begun gaining traction also in general artificial intelligence because of its suitability for studying coordinated multi-agent systems. Yet the original formulation of correlated equilibrium assumes entirely rational players and hence fails to capture the subrational behavior of human decision-makers. We investigate the analogue of quantal response for correlated equilibrium, which is among the most commonly used models of bounded rationality. We coin the solution concept the quantal correlated equilibrium and study its relation to quantal response and correlated equilibria. The definition corroborates with prior conception as every quantal response equilibrium is a quantal correlated equilibrium, and correlated equilibrium is its limit as quantal responses approach the best response. We prove the concept remains PPAD-hard but searching for an optimal correlation device is beneficial for the signaler. To this end, we introduce a homotopic algorithm that simultaneously traces the equilibrium and optimizes the signaling distribution. Empirical results on one structured and one random domain show that our approach is sufficiently precise and several orders of magnitude faster than a state-of-the-art non-convex optimization solver.
范式博弈中的量子相关均衡
相关均衡是博弈论中一个既定的解决方案概念,描述了参与者根据相关装置产生的外部信号来调整策略的情况。近年来,这个概念也开始在通用人工智能领域获得关注,因为它适合研究协调的多智能体系统。然而,相关均衡的原始公式假设参与者完全是理性的,因此未能捕捉到人类决策者的非理性行为。我们研究了相关均衡的量子响应的模拟,这是最常用的有限理性模型之一。提出了量子相关平衡的解概念,并研究了其与量子响应和相关平衡的关系。该定义证实了先前的概念,即每一个量子响应平衡都是一个量子相关平衡,当量子响应接近最佳响应时,相关平衡是它的极限。我们证明了这个概念仍然是PPAD-hard,但寻找一个最佳的相关装置对信号者是有益的。为此,我们引入了一种同时跟踪均衡和优化信令分布的同伦算法。在一个结构化和一个随机域上的经验结果表明,我们的方法足够精确,并且比最先进的非凸优化求解器快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信