Acoustic Scene Classification Based on Sparse Coding and Convolutional Neural Networks

Yong Tang, Anqin Lu, Z. Liu, Y. Leng, Rongyan Wang, Chengli Sun, Jiande Sun, Chan Lin, Weiwei Zhao, Wenjing Li
{"title":"Acoustic Scene Classification Based on Sparse Coding and Convolutional Neural Networks","authors":"Yong Tang, Anqin Lu, Z. Liu, Y. Leng, Rongyan Wang, Chengli Sun, Jiande Sun, Chan Lin, Weiwei Zhao, Wenjing Li","doi":"10.1109/IC-NIDC54101.2021.9660528","DOIUrl":null,"url":null,"abstract":"CNN is a model which is currently widely used in acoustic scene classification. Sparse coding is a model which used to be very popular in acoustic classification field before deep learning technology is widely used. In this paper we combine these two models for acoustic scene classification. Specifically, the calibrated sparse representation based score is fused with the score obtained through CNN classification model for classification. Experimental results on TUT acoustic scenes 2017 dataset and LITIS Rouen dataset show that the proposed algorithm can make good use of the classification abilities of sparse coding and CNN.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CNN is a model which is currently widely used in acoustic scene classification. Sparse coding is a model which used to be very popular in acoustic classification field before deep learning technology is widely used. In this paper we combine these two models for acoustic scene classification. Specifically, the calibrated sparse representation based score is fused with the score obtained through CNN classification model for classification. Experimental results on TUT acoustic scenes 2017 dataset and LITIS Rouen dataset show that the proposed algorithm can make good use of the classification abilities of sparse coding and CNN.
基于稀疏编码和卷积神经网络的声场景分类
CNN是目前广泛应用于声学场景分类的一种模型。在深度学习技术得到广泛应用之前,稀疏编码是声学分类领域中非常流行的一种模型。本文将这两种模型结合起来进行声场景分类。具体来说,将校正后的基于稀疏表示的分数与CNN分类模型得到的分数融合进行分类。在TUT声学场景2017数据集和LITIS Rouen数据集上的实验结果表明,该算法可以很好地利用稀疏编码和CNN的分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信