Predicting Web Search Hit Counts

Tian Tian, J. Geller, Soon Ae Chun
{"title":"Predicting Web Search Hit Counts","authors":"Tian Tian, J. Geller, Soon Ae Chun","doi":"10.1109/WI-IAT.2010.227","DOIUrl":null,"url":null,"abstract":"Keyword-based search engines often return an unexpected number of results. Zero hits are naturally undesirable, while too many hits are likely to be overwhelming and of low precision. We present an approach for predicting the number of hits for a given set of query terms. Using word frequencies derived from a large corpus, we construct random samples of combinations of these words as search terms. Then we derive a correlation function between the computed probabilities of search terms and the observed hit counts for them. This regression function is used to predict the hit counts for a user’s new searches, with the intention of avoiding information overload. We report the results of experiments with Google, Yahoo! and Bing to validate our methodology. We further investigate the monotonicity of search results for negative search terms by those three search engines.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Keyword-based search engines often return an unexpected number of results. Zero hits are naturally undesirable, while too many hits are likely to be overwhelming and of low precision. We present an approach for predicting the number of hits for a given set of query terms. Using word frequencies derived from a large corpus, we construct random samples of combinations of these words as search terms. Then we derive a correlation function between the computed probabilities of search terms and the observed hit counts for them. This regression function is used to predict the hit counts for a user’s new searches, with the intention of avoiding information overload. We report the results of experiments with Google, Yahoo! and Bing to validate our methodology. We further investigate the monotonicity of search results for negative search terms by those three search engines.
预测网络搜索命中数
基于关键字的搜索引擎通常会返回一些意想不到的结果。零命中自然是不受欢迎的,而太多命中可能是压倒性的和低精度的。我们提出了一种预测给定查询词集命中次数的方法。使用来自大型语料库的词频,我们构建这些词组合的随机样本作为搜索词。然后,我们推导出搜索项的计算概率与观察到的命中次数之间的关联函数。这个回归函数用于预测用户新搜索的命中次数,目的是避免信息过载。我们报道了与谷歌、雅虎!和必应来验证我们的方法我们进一步研究了这三个搜索引擎对负面搜索项的搜索结果的单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信