Statistical Analysis on Global Optimization

T. Ullrich, D. Fellner
{"title":"Statistical Analysis on Global Optimization","authors":"T. Ullrich, D. Fellner","doi":"10.1109/MCSI.2014.15","DOIUrl":null,"url":null,"abstract":"The global optimization of a mathematical model determines the best parameters such that a target or cost function is minimized. Optimization problems arise in almost all scientific disciplines (operations research, life sciences, etc.). Only in a few exceptional cases, these problems can be solved analytically-exactly, so in practice numerical routines based on approximations have to be used. The routines return a result -- a so-called candidate of a global minimum. Unfortunately, the question whether the candidate represents the optimal solution, often remains unanswered. This article presents a simple-to-use, statistical analysis that determines and assesses the quality of such a result. This information is valuable and important -- especially for practical application.","PeriodicalId":202841,"journal":{"name":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Mathematics and Computers in Sciences and in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2014.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The global optimization of a mathematical model determines the best parameters such that a target or cost function is minimized. Optimization problems arise in almost all scientific disciplines (operations research, life sciences, etc.). Only in a few exceptional cases, these problems can be solved analytically-exactly, so in practice numerical routines based on approximations have to be used. The routines return a result -- a so-called candidate of a global minimum. Unfortunately, the question whether the candidate represents the optimal solution, often remains unanswered. This article presents a simple-to-use, statistical analysis that determines and assesses the quality of such a result. This information is valuable and important -- especially for practical application.
全局优化的统计分析
数学模型的全局优化确定最佳参数,使目标函数或代价函数最小化。优化问题几乎出现在所有的科学学科中(运筹学、生命科学等)。只有在少数例外情况下,这些问题才能精确地解析解决,因此在实践中必须使用基于近似的数值例程。这些例程返回一个结果——一个所谓的全局最小值候选值。不幸的是,候选人是否代表最佳解决方案的问题往往没有答案。本文提供了一种简单易用的统计分析方法,用于确定和评估此类结果的质量。这些信息是有价值和重要的——特别是对于实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信