Uncalibrated fixed-camera visual servoing of robot manipulators by considering the motor dynamics

Xinwu Liang, Hesheng Wang, Weidong Chen
{"title":"Uncalibrated fixed-camera visual servoing of robot manipulators by considering the motor dynamics","authors":"Xinwu Liang, Hesheng Wang, Weidong Chen","doi":"10.1109/MFI.2012.6343058","DOIUrl":null,"url":null,"abstract":"In this paper, the uncalibrated visual servoing problem of robot manipulators with motor dynamics will be addressed for the fixed-camera configuration. A new adaptive image-space visual servoing strategy is presented to handle uncertainties in the camera intrinsic and extrinsic parameters, robot kinematic and dynamic parameters, and motor dynamic parameters. To deal with the nonlinear dependence of image Jacobian matrix on the unknown parameters, the proposed scheme is developed based on the concept of depth-independent interaction matrix. In this way, the camera parameters and the robot kinematic parameters in the closed-loop dynamics can be linearly parameterized such that adaptive laws can be designed to estimate them on-line. Adaptive algorithms are also developed to provide estimation of unknown robot dynamic and motor dynamic parameters. Stability analysis will be performed to show asymptotic convergence of image errors using Lyapunov theory based on both rigid-link robot dynamics and full motor dynamics. Simulation results based on a two-link planar robot manipulators will be given to illustrate the performance of the proposed scheme.","PeriodicalId":103145,"journal":{"name":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2012.6343058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the uncalibrated visual servoing problem of robot manipulators with motor dynamics will be addressed for the fixed-camera configuration. A new adaptive image-space visual servoing strategy is presented to handle uncertainties in the camera intrinsic and extrinsic parameters, robot kinematic and dynamic parameters, and motor dynamic parameters. To deal with the nonlinear dependence of image Jacobian matrix on the unknown parameters, the proposed scheme is developed based on the concept of depth-independent interaction matrix. In this way, the camera parameters and the robot kinematic parameters in the closed-loop dynamics can be linearly parameterized such that adaptive laws can be designed to estimate them on-line. Adaptive algorithms are also developed to provide estimation of unknown robot dynamic and motor dynamic parameters. Stability analysis will be performed to show asymptotic convergence of image errors using Lyapunov theory based on both rigid-link robot dynamics and full motor dynamics. Simulation results based on a two-link planar robot manipulators will be given to illustrate the performance of the proposed scheme.
考虑电机动力学的机械臂无标定固定摄像机视觉伺服
本文研究了固定摄像机配置下具有电机动力学特性的机械臂视觉伺服系统的无标定问题。针对摄像机内外参数、机器人运动学和动力学参数以及电机动力学参数的不确定性,提出了一种新的自适应图像空间视觉伺服策略。针对图像雅可比矩阵对未知参数的非线性依赖,提出了基于深度无关交互矩阵的方案。通过这种方法,可以对相机参数和机器人的运动学参数进行线性参数化,并设计自适应律对其进行在线估计。还开发了自适应算法来估计未知的机器人动态参数和电机动态参数。稳定性分析将使用基于刚性连杆机器人动力学和全电机动力学的李雅普诺夫理论来显示图像误差的渐近收敛。基于平面双连杆机器人的仿真结果说明了所提方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信