Fast Sparse Gaussian Processes Learning for Man-Made Structure Classification

Hang Zhou, D. Suter
{"title":"Fast Sparse Gaussian Processes Learning for Man-Made Structure Classification","authors":"Hang Zhou, D. Suter","doi":"10.1109/CVPR.2007.383441","DOIUrl":null,"url":null,"abstract":"Informative Vector Machine (IVM) is an efficient fast sparse Gaussian process's (GP) method previously suggested for active learning. It greatly reduces the computational cost of GP classification and makes the GP learning close to real time. We apply IVM for man-made structure classification (a two class problem). Our work includes the investigation of the performance of IVM with varied active data points as well as the effects of different choices of GP kernels. Satisfactory results have been obtained, showing that the approach keeps full GP classification performance and yet is significantly faster (by virtue if using a subset of the whole training data points).","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Informative Vector Machine (IVM) is an efficient fast sparse Gaussian process's (GP) method previously suggested for active learning. It greatly reduces the computational cost of GP classification and makes the GP learning close to real time. We apply IVM for man-made structure classification (a two class problem). Our work includes the investigation of the performance of IVM with varied active data points as well as the effects of different choices of GP kernels. Satisfactory results have been obtained, showing that the approach keeps full GP classification performance and yet is significantly faster (by virtue if using a subset of the whole training data points).
用于人工结构分类的快速稀疏高斯过程学习
信息向量机(IVM)是一种高效、快速的稀疏高斯过程(GP)主动学习方法。它大大降低了GP分类的计算成本,使GP学习接近实时性。我们将IVM应用于人工结构分类(一个两类问题)。我们的工作包括调查具有不同活动数据点的IVM的性能,以及不同选择GP内核的影响。已经获得了令人满意的结果,表明该方法保持了完整的GP分类性能,但速度明显更快(由于使用了整个训练数据点的子集)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信