Vector Quantile Regression

G. Carlier, V. Chernozhukov, Alfred Galichon
{"title":"Vector Quantile Regression","authors":"G. Carlier, V. Chernozhukov, Alfred Galichon","doi":"10.1920/WP.CEM.2014.4814","DOIUrl":null,"url":null,"abstract":"We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector Y, taking values in ℝd given covariates Z=z, taking values in ℝk, is a map u↦QY∣Z(u,z), which is monotone, in the sense of being a gradient of a convex function, and such that given that vector U follows a reference non-atomic distribution FU, for instance uniform distribution on a unit cube in ℝd, the random vector QY∣Z(U,z) has the distribution of Y conditional on Z=z. Moreover, we have a strong representation, Y=QY∣Z(U,Z) almost surely, for some version of U. The vector quantile regression (VQR) is a linear model for CVQF of Y given Z. Under correct specification, the notion produces strong representation, Y=β(U)⊤f(Z), for f(Z) denoting a known set of transformations of Z, where u↦β(u)⊤f(Z) is a monotone map, the gradient of a convex function, and the quantile regression coefficients u↦β(u) have the interpretations analogous to that of the standard scalar quantile regression. As f(Z) becomes a richer class of transformations of Z, the model becomes nonparametric, as in series modelling. A key property of VQR is the embedding of the classical Monge-Kantorovich's optimal transportation problem at its core as a special case. In the classical case, where Y is scalar, VQR reduces to a version of the classical QR, and CVQF reduces to the scalar conditional quantile function. Several applications to diverse problems such as multiple Engel curve estimation, and measurement of financial risk, are considered.","PeriodicalId":325508,"journal":{"name":"Sciences Po publications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sciences Po publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1920/WP.CEM.2014.4814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector Y, taking values in ℝd given covariates Z=z, taking values in ℝk, is a map u↦QY∣Z(u,z), which is monotone, in the sense of being a gradient of a convex function, and such that given that vector U follows a reference non-atomic distribution FU, for instance uniform distribution on a unit cube in ℝd, the random vector QY∣Z(U,z) has the distribution of Y conditional on Z=z. Moreover, we have a strong representation, Y=QY∣Z(U,Z) almost surely, for some version of U. The vector quantile regression (VQR) is a linear model for CVQF of Y given Z. Under correct specification, the notion produces strong representation, Y=β(U)⊤f(Z), for f(Z) denoting a known set of transformations of Z, where u↦β(u)⊤f(Z) is a monotone map, the gradient of a convex function, and the quantile regression coefficients u↦β(u) have the interpretations analogous to that of the standard scalar quantile regression. As f(Z) becomes a richer class of transformations of Z, the model becomes nonparametric, as in series modelling. A key property of VQR is the embedding of the classical Monge-Kantorovich's optimal transportation problem at its core as a special case. In the classical case, where Y is scalar, VQR reduces to a version of the classical QR, and CVQF reduces to the scalar conditional quantile function. Several applications to diverse problems such as multiple Engel curve estimation, and measurement of financial risk, are considered.
向量分位数回归
我们提出了条件向量分位数函数和向量分位数回归的概念。一个随机向量Y的条件向量分位数函数(CVQF),在给定协变量Z= Z的情况下,在给定的协变量Z= Z的情况下,在给定的协变量Z= Z的情况下,在给定凸函数的梯度的意义上,它是一个映射u∈QY∣Z(u, Z),它是单调的,并且使得给定向量u遵循参考非原子分布FU,例如在给定的单位立方体上的均匀分布,那么随机向量QY∣Z(u, Z)在Z= Z上具有Y的条件分布。此外,对于某些版本的U,我们几乎肯定地得到了一个强表示,Y=QY∣Z(U,Z)。向量分位数回归(VQR)是Y给定Z的CVQF的一个线性模型。在正确的规范下,这个概念产生了强表示,Y=β(U)∞f(Z),对于f(Z)表示已知的Z的变换集合,其中U∈β(U)∞f(Z)是一个单调映射,凸函数的梯度,分位数回归系数u∈β(u)的解释与标准标量分位数回归的解释类似。当f(Z)成为Z的更丰富的变换类时,模型就变成了非参数的,就像在序列建模中一样。VQR的一个关键性质是将经典的Monge-Kantorovich最优运输问题作为一个特例嵌入其核心。在经典情况下,Y为标量,VQR约简为经典QR的一个版本,CVQF约简为标量条件分位数函数。考虑了多种问题的应用,如多重恩格尔曲线估计和金融风险度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信