The Research of Gait Recognition Based on High Dynamic Force Sensing Resistor

Peng Yang, Xiaodong Cai, Yanli Geng, Lingling Chen
{"title":"The Research of Gait Recognition Based on High Dynamic Force Sensing Resistor","authors":"Peng Yang, Xiaodong Cai, Yanli Geng, Lingling Chen","doi":"10.1145/3386164.3386172","DOIUrl":null,"url":null,"abstract":"The human gait contains the information of lower limb movement posture. Gait recognition and analysis can provide control information for lower limb rehabilitation robots. In different gait phases, the position of the foot touching the ground is different. Therefore, gait classification can be performed according to plantar pressure. This study investigated the changes in plantar pressure information during human lower limb walking. Firstly, the STM32 single-chip microcomputer is used to collect the plantar pressure information detected by the high dynamic force sensing resistor(HD-FSR); secondly, the collected information is transmitted to the upper computer through Bluetooth; finally, all kinds of gait phases pressure features are analyzed and classified. Since the two constant parameters in the Support Vector Machine(SVM) classification algorithm have a great influence on the classification effect, a SVM classification algorithm based on the Particle Swarm Optimization(PSO) is proposed to realize the recognition of different phases.","PeriodicalId":231209,"journal":{"name":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386164.3386172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The human gait contains the information of lower limb movement posture. Gait recognition and analysis can provide control information for lower limb rehabilitation robots. In different gait phases, the position of the foot touching the ground is different. Therefore, gait classification can be performed according to plantar pressure. This study investigated the changes in plantar pressure information during human lower limb walking. Firstly, the STM32 single-chip microcomputer is used to collect the plantar pressure information detected by the high dynamic force sensing resistor(HD-FSR); secondly, the collected information is transmitted to the upper computer through Bluetooth; finally, all kinds of gait phases pressure features are analyzed and classified. Since the two constant parameters in the Support Vector Machine(SVM) classification algorithm have a great influence on the classification effect, a SVM classification algorithm based on the Particle Swarm Optimization(PSO) is proposed to realize the recognition of different phases.
基于高动态力感电阻的步态识别研究
人的步态包含了下肢运动姿态的信息。步态识别与分析可以为下肢康复机器人提供控制信息。在不同的步态阶段,足部接触地面的位置是不同的。因此,可以根据足底压力进行步态分类。本研究探讨了人类下肢行走过程中足底压力信息的变化。首先,利用STM32单片机采集高动态力敏电阻(HD-FSR)检测的足底压力信息;其次,将采集到的信息通过蓝牙传输到上位机;最后,对步态各阶段压力特征进行了分析和分类。针对支持向量机(SVM)分类算法中两个常量参数对分类效果影响较大的问题,提出了一种基于粒子群优化(PSO)的支持向量机分类算法,实现对不同阶段的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信