{"title":"Coherent Moment-Based Approximations of Risk Functionals","authors":"Stoyan Stoyanov","doi":"10.2139/ssrn.2346011","DOIUrl":null,"url":null,"abstract":"The paper introduces a new, moment-based representation of version independent, coherent risk functionals for distributions with a finite second moment. The representation is based on L-moments. We analyze the second- and the third-order approximations and provide a method for constructing coherent approximations with the first few moments of the distribution. The method can be applied to coherent and non-coherent risk functionals and is interpreted in terms of a weighted average of particular Bayesian versions of Conditional Value-at-Risk. We formulate a conservative risk functional and a minimax portfolio construction problem which is non-parametric, convex, and exhibits a relative statistical robustness of the optimal solution compared to the classical utility-based approach. The developed approach bridges the gap between the intuitive utility-based higher-order moment portfolio construction and the formal construct of coherent risk functionals.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2346011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper introduces a new, moment-based representation of version independent, coherent risk functionals for distributions with a finite second moment. The representation is based on L-moments. We analyze the second- and the third-order approximations and provide a method for constructing coherent approximations with the first few moments of the distribution. The method can be applied to coherent and non-coherent risk functionals and is interpreted in terms of a weighted average of particular Bayesian versions of Conditional Value-at-Risk. We formulate a conservative risk functional and a minimax portfolio construction problem which is non-parametric, convex, and exhibits a relative statistical robustness of the optimal solution compared to the classical utility-based approach. The developed approach bridges the gap between the intuitive utility-based higher-order moment portfolio construction and the formal construct of coherent risk functionals.