Efficient foreground-background segmentation using local features for object detection

F. Carrara, Giuseppe Amato, F. Falchi, C. Gennaro
{"title":"Efficient foreground-background segmentation using local features for object detection","authors":"F. Carrara, Giuseppe Amato, F. Falchi, C. Gennaro","doi":"10.1145/2789116.2789136","DOIUrl":null,"url":null,"abstract":"In this work, a local feature based background modelling for background-foreground feature segmentation is presented. In local feature based computer vision applications, a local feature based model presents advantages with respect to classical pixel-based ones in terms of informativeness, robustness and segmentation performances. The method discussed in this paper is a block-wise background modelling where we propose to store the positions of only most frequent local feature configurations for each block. Incoming local features are classified as background or foreground depending on their position with respect to stored configurations. The resulting classification is refined applying a block-level analysis. Experiments on public dataset were conducted to compare the presented method to classical pixel-based background modelling.","PeriodicalId":113163,"journal":{"name":"Proceedings of the 9th International Conference on Distributed Smart Cameras","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789116.2789136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, a local feature based background modelling for background-foreground feature segmentation is presented. In local feature based computer vision applications, a local feature based model presents advantages with respect to classical pixel-based ones in terms of informativeness, robustness and segmentation performances. The method discussed in this paper is a block-wise background modelling where we propose to store the positions of only most frequent local feature configurations for each block. Incoming local features are classified as background or foreground depending on their position with respect to stored configurations. The resulting classification is refined applying a block-level analysis. Experiments on public dataset were conducted to compare the presented method to classical pixel-based background modelling.
利用局部特征进行目标检测的高效前景-背景分割
本文提出了一种基于局部特征的背景建模方法,用于背景-前景特征分割。在基于局部特征的计算机视觉应用中,基于局部特征的模型在信息量、鲁棒性和分割性能方面都优于经典的基于像素的模型。本文讨论的方法是一种基于块的背景建模方法,我们建议仅存储每个块中最频繁的局部特征配置的位置。输入的局部特征根据其相对于存储配置的位置被分类为背景或前景。使用块级分析对所得到的分类进行细化。在公共数据集上进行了实验,将该方法与经典的基于像素的背景建模进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信