Mathematical Modeling and Optimal Inference of Guided Markov-Like Trajectory

R. Rezaie, X. Rong Li
{"title":"Mathematical Modeling and Optimal Inference of Guided Markov-Like Trajectory","authors":"R. Rezaie, X. Rong Li","doi":"10.1109/MFI49285.2020.9235241","DOIUrl":null,"url":null,"abstract":"A trajectory of a destination-directed moving object (e.g. an aircraft from an origin airport to a destination airport) has three main components: an origin, a destination, and motion in between. We call such a trajectory that end up at the destination destination-directed trajectory (DDT). A class of conditionally Markov (CM) sequences (called CML) has the following main components: a joint density of two endpoints and a Markov-like evolution law. A CML dynamic model can describe the evolution of a DDT but not of a guided object chasing a moving guide. The trajectory of a guided object is called a guided trajectory (GT). Inspired by a CML model, this paper proposes a model for a GT with a moving guide. The proposed model reduces to a CML model if the guide is not moving. We also study filtering and trajectory prediction based on the proposed model. Simulation results are presented.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"379 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A trajectory of a destination-directed moving object (e.g. an aircraft from an origin airport to a destination airport) has three main components: an origin, a destination, and motion in between. We call such a trajectory that end up at the destination destination-directed trajectory (DDT). A class of conditionally Markov (CM) sequences (called CML) has the following main components: a joint density of two endpoints and a Markov-like evolution law. A CML dynamic model can describe the evolution of a DDT but not of a guided object chasing a moving guide. The trajectory of a guided object is called a guided trajectory (GT). Inspired by a CML model, this paper proposes a model for a GT with a moving guide. The proposed model reduces to a CML model if the guide is not moving. We also study filtering and trajectory prediction based on the proposed model. Simulation results are presented.
制导类马尔可夫轨迹的数学建模与最优推理
一个以目的地为导向的移动物体(例如一架飞机从起点机场到目的地机场)的轨迹有三个主要组成部分:起点、目的地和中间的运动。我们把这种最终到达目的地的轨迹称为目标导向轨迹(DDT)。一类条件马尔可夫(CM)序列(称为CML)具有以下主要组成部分:两个端点的联合密度和一类马尔可夫进化律。CML动态模型可以描述滴滴涕的演化过程,但不能描述被引导对象追逐移动导航仪的演化过程。制导目标的弹道称为制导弹道(GT)。受CML模型的启发,本文提出了一种带有运动导轨的GT模型。如果导轨不移动,建议的模型将简化为CML模型。我们还研究了基于该模型的滤波和轨迹预测。给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信