Badr Mohseh Mohammed, A. A. Al-Hadi, S. Azemi, L. Y. Seng, W. F. Hoon, Yen San Loh, Muhammad Irsyad Suhaimi, L. M. Lim, Zambri Samsudin, I. Mansor, P. Soh
{"title":"Fabrication of a Wearable Antenna with Defected Ground Structure on a Flexible TPU-Polyester Substrate","authors":"Badr Mohseh Mohammed, A. A. Al-Hadi, S. Azemi, L. Y. Seng, W. F. Hoon, Yen San Loh, Muhammad Irsyad Suhaimi, L. M. Lim, Zambri Samsudin, I. Mansor, P. Soh","doi":"10.1109/RFM56185.2022.10064780","DOIUrl":null,"url":null,"abstract":"This work presents a patch antenna with defected ground structure (DGS) on flexible materials for wearable applications. It is fed a 50 Ω inset feed and designed for operation at 2.45 GHz on a thermoplastic polyurethane-polyester fabric substrate. The DGS are integrated to ensure a compact design and improved bandwidth, efficiency, and gain. Simulations indicated that the antenna bandwidth is enhanced from 28.4 MHz without DGS to 79.3 MHz. Besides that, its gain is also improved from 2.01 dBi without DGS to 3.62 dBi and efficiency from 30% to 74%. Both antenna designs are fabricated and measured and provide good results and performance with efficiency greater than 50%.","PeriodicalId":171480,"journal":{"name":"2022 IEEE International RF and Microwave Conference (RFM)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International RF and Microwave Conference (RFM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFM56185.2022.10064780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a patch antenna with defected ground structure (DGS) on flexible materials for wearable applications. It is fed a 50 Ω inset feed and designed for operation at 2.45 GHz on a thermoplastic polyurethane-polyester fabric substrate. The DGS are integrated to ensure a compact design and improved bandwidth, efficiency, and gain. Simulations indicated that the antenna bandwidth is enhanced from 28.4 MHz without DGS to 79.3 MHz. Besides that, its gain is also improved from 2.01 dBi without DGS to 3.62 dBi and efficiency from 30% to 74%. Both antenna designs are fabricated and measured and provide good results and performance with efficiency greater than 50%.