Venkata Sirimuvva Chirala, Saravanan Venkatachalam, J. Smereka, Sam Kassoumeh
{"title":"A Multi-Objective Optimization Approach for Multi-Vehicle Path Planning Problems considering Human-Robot Interactions","authors":"Venkata Sirimuvva Chirala, Saravanan Venkatachalam, J. Smereka, Sam Kassoumeh","doi":"10.1115/1.4053426","DOIUrl":null,"url":null,"abstract":"\n There has been unprecedented development in the field of unmanned ground vehicles (UGVs) over the past few years. UGVs have been used in many fields including civilian and military with applications such as military reconnaissance, transportation, and search and research missions. This is due to their increasing capabilities in terms of performance, power, and tackling risky missions. The level of autonomy given to these UGVs is a critical factor to consider. In many applications of multi-robotic systems like “search-and-rescue” missions, teamwork between human and robots is essential. In this paper, given a team of manned ground vehicles (MGVs) and unmanned ground vehicles (UGVs), the objective is to develop a model which can minimize the number of teams and total distance traveled while considering human-robot interaction (HRI) studies. The human costs of managing a team of UGVs by a manned ground vehicle (MGV) are based on human-robot interaction (HRI) studies. In this research, we introduce a combinatorial, multi objective ground vehicle path planning problem which takes human-robot interactions into consideration. The objective of the problem is to find: ideal number of teams of MGVs-UGVs that follow a leader-follower framework where a set of UGVs follow an MGV; and path for each team such that the missions are completed efficiently.","PeriodicalId":164923,"journal":{"name":"Journal of Autonomous Vehicles and Systems","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Vehicles and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4053426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
There has been unprecedented development in the field of unmanned ground vehicles (UGVs) over the past few years. UGVs have been used in many fields including civilian and military with applications such as military reconnaissance, transportation, and search and research missions. This is due to their increasing capabilities in terms of performance, power, and tackling risky missions. The level of autonomy given to these UGVs is a critical factor to consider. In many applications of multi-robotic systems like “search-and-rescue” missions, teamwork between human and robots is essential. In this paper, given a team of manned ground vehicles (MGVs) and unmanned ground vehicles (UGVs), the objective is to develop a model which can minimize the number of teams and total distance traveled while considering human-robot interaction (HRI) studies. The human costs of managing a team of UGVs by a manned ground vehicle (MGV) are based on human-robot interaction (HRI) studies. In this research, we introduce a combinatorial, multi objective ground vehicle path planning problem which takes human-robot interactions into consideration. The objective of the problem is to find: ideal number of teams of MGVs-UGVs that follow a leader-follower framework where a set of UGVs follow an MGV; and path for each team such that the missions are completed efficiently.