Performance Analysis of Single Coreshell Magnetoelectric Microdevice for Electrical Stimulation

R. Narayanan, F. R. Rostami, A. Khaleghi, I. Balasingham
{"title":"Performance Analysis of Single Coreshell Magnetoelectric Microdevice for Electrical Stimulation","authors":"R. Narayanan, F. R. Rostami, A. Khaleghi, I. Balasingham","doi":"10.1109/BSN56160.2022.9928514","DOIUrl":null,"url":null,"abstract":"Electrical stimulation of biological cells and tissues is an established technique to stimulate cells such as neurons and cardiomyocytes to enable the treatment of some disorders like Parkinson’s disease, cardiac arrhythmias, obstructive sleep apnea epilepsy, and depression. These devices use electronic circuits, batteries, and wires to transfer the stimulation signal to the target region. On the contrary, macro-scale devices such as scalp based bioelectrodes, surgical implants etc., require invasive surgery and constant fault monitoring. The use of standalone bio-compatible wireless micro-devices that can enable remote control and monitoring, powering and stimulation of cells and tissues and, deliver the stimulation therapy without additional circuits and battery, can be a significant advantage. In this paper, we introduce the concept of using magnetoelectric (ME) material composition to generate controllable electrical stimulation patterns for the Central Nervous System (CNS) stimulation therapy. We propose the potential use of ME structures in multi-modal resonant frequencies, for active stimulation. A spherical ME coreshell microdevice is designed and the Multiphysics numerical computations are used to evaluate the strain induced voltage on the device by using a remote magnetic bias and alternating magnetic field. It is shown that using the ME device in the resultant strain mode can create a sufficient voltage gradient that can potentially be used for wireless stimulation.","PeriodicalId":150990,"journal":{"name":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN56160.2022.9928514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical stimulation of biological cells and tissues is an established technique to stimulate cells such as neurons and cardiomyocytes to enable the treatment of some disorders like Parkinson’s disease, cardiac arrhythmias, obstructive sleep apnea epilepsy, and depression. These devices use electronic circuits, batteries, and wires to transfer the stimulation signal to the target region. On the contrary, macro-scale devices such as scalp based bioelectrodes, surgical implants etc., require invasive surgery and constant fault monitoring. The use of standalone bio-compatible wireless micro-devices that can enable remote control and monitoring, powering and stimulation of cells and tissues and, deliver the stimulation therapy without additional circuits and battery, can be a significant advantage. In this paper, we introduce the concept of using magnetoelectric (ME) material composition to generate controllable electrical stimulation patterns for the Central Nervous System (CNS) stimulation therapy. We propose the potential use of ME structures in multi-modal resonant frequencies, for active stimulation. A spherical ME coreshell microdevice is designed and the Multiphysics numerical computations are used to evaluate the strain induced voltage on the device by using a remote magnetic bias and alternating magnetic field. It is shown that using the ME device in the resultant strain mode can create a sufficient voltage gradient that can potentially be used for wireless stimulation.
电刺激单芯壳磁电微器件性能分析
电刺激生物细胞和组织是一种成熟的技术,可以刺激神经元和心肌细胞等细胞,从而治疗帕金森病、心律失常、阻塞性睡眠呼吸暂停癫痫和抑郁症等疾病。这些装置使用电子电路、电池和电线将刺激信号传输到目标区域。相反,宏观设备,如基于头皮的生物电极、外科植入物等,需要侵入性手术和持续的故障监测。使用独立的生物兼容无线微型设备,可以实现远程控制和监测,为细胞和组织供电和刺激,并且无需额外的电路和电池即可提供刺激治疗,这是一个显着的优势。本文介绍了利用磁电(ME)材料组成产生可控电刺激模式的概念,用于中枢神经系统(CNS)刺激治疗。我们提出了在多模态谐振频率中使用ME结构的潜在用途,用于主动刺激。设计了一种球形ME核壳微器件,利用远偏磁和交变磁场对器件上的应变感应电压进行了多物理场数值计算。结果表明,在合成应变模式下使用ME设备可以产生足够的电压梯度,可以潜在地用于无线刺激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信