Knowledge Base K Models to Support Trade-Offs for Self-Adaptation using Markov Processes

L. H. Paucar, N. Bencomo
{"title":"Knowledge Base K Models to Support Trade-Offs for Self-Adaptation using Markov Processes","authors":"L. H. Paucar, N. Bencomo","doi":"10.1109/SASO.2019.00011","DOIUrl":null,"url":null,"abstract":"Runtime models support decision-making and reasoning for self-adaptation based on both design-time knowledge and information that may emerge at runtime. In this paper, we demonstrate a novel use of Partially Observable Markov Decision Processes (POMDPs) as runtime models to support the decision-making of a Self Adaptive System (SAS) in the context of the MAPE-K loop. The trade-off between the non-functional requirements (NFRs) has been embodied as a POMDP in the context of the MAPE-K loop. Using Bayesian learning, the levels of satisficement of the NFRs are inferred and updated during execution in the form of runtime models in the Knowledge Base. We evaluate our work with a case study of the networking application domain.","PeriodicalId":259990,"journal":{"name":"2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Runtime models support decision-making and reasoning for self-adaptation based on both design-time knowledge and information that may emerge at runtime. In this paper, we demonstrate a novel use of Partially Observable Markov Decision Processes (POMDPs) as runtime models to support the decision-making of a Self Adaptive System (SAS) in the context of the MAPE-K loop. The trade-off between the non-functional requirements (NFRs) has been embodied as a POMDP in the context of the MAPE-K loop. Using Bayesian learning, the levels of satisficement of the NFRs are inferred and updated during execution in the form of runtime models in the Knowledge Base. We evaluate our work with a case study of the networking application domain.
利用马尔科夫过程支持自适应权衡的知识库K模型
运行时模型支持基于设计时知识和可能在运行时出现的信息的自适应决策和推理。在本文中,我们展示了部分可观察马尔可夫决策过程(pomdp)作为运行时模型的一种新使用,以支持MAPE-K循环背景下自适应系统(SAS)的决策。在MAPE-K循环的上下文中,非功能需求(nfr)之间的权衡体现为POMDP。使用贝叶斯学习,在执行过程中以知识库中的运行时模型的形式推断和更新nfr的满意度水平。我们通过一个网络应用领域的案例研究来评估我们的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信