General Pattern Run-Length Transform for Writer Identification

Sheng He, Lambert Schomaker
{"title":"General Pattern Run-Length Transform for Writer Identification","authors":"Sheng He, Lambert Schomaker","doi":"10.1109/DAS.2016.42","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel textural-based feature for writer identification: the General Pattern Run-Length Transform (GPRLT), which is the histogram of the run-length of any complex patterns. The GPRLT can be computed on the binary images (GPRLT bin) or on the gray scale images (GPRLT gray) without using any binarization or segmentation methods. Experimental results show that the GPRLT gray achieves even higher performance than the GPRLT bin for writer identification. The writer identification performance on the challenging CERUG-EN data set demonstrates that the proposed methods outperform state-of-the-art algorithms. Our source code and data set are available on www.ai.rug.nl/~sheng/dflib.","PeriodicalId":197359,"journal":{"name":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th IAPR Workshop on Document Analysis Systems (DAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2016.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper we present a novel textural-based feature for writer identification: the General Pattern Run-Length Transform (GPRLT), which is the histogram of the run-length of any complex patterns. The GPRLT can be computed on the binary images (GPRLT bin) or on the gray scale images (GPRLT gray) without using any binarization or segmentation methods. Experimental results show that the GPRLT gray achieves even higher performance than the GPRLT bin for writer identification. The writer identification performance on the challenging CERUG-EN data set demonstrates that the proposed methods outperform state-of-the-art algorithms. Our source code and data set are available on www.ai.rug.nl/~sheng/dflib.
用于写器识别的通用模式运行长度变换
在本文中,我们提出了一种新的基于纹理的作家识别特征:通用模式游程变换(GPRLT),它是任何复杂模式的游程直方图。GPRLT既可以在二值图像(GPRLT bin)上计算,也可以在灰度图像(GPRLT gray)上计算,无需使用任何二值化或分割方法。实验结果表明,GPRLT灰度比GPRLT bin在作者识别方面取得了更高的性能。在具有挑战性的CERUG-EN数据集上的作者识别性能表明,所提出的方法优于最先进的算法。我们的源代码和数据集可在www.ai.rug.nl/~sheng/dflib上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信