AraProp at WANLP 2022 Shared Task: Leveraging Pre-Trained Language Models for Arabic Propaganda Detection

Gaurav Singh
{"title":"AraProp at WANLP 2022 Shared Task: Leveraging Pre-Trained Language Models for Arabic Propaganda Detection","authors":"Gaurav Singh","doi":"10.18653/v1/2022.wanlp-1.56","DOIUrl":null,"url":null,"abstract":"This paper presents the approach taken for the shared task on Propaganda Detection in Arabic at the Seventh Arabic Natural Language Processing Workshop (WANLP 2022). We participated in Sub-task 1 where the text of a tweet is provided, and the goal is to identify the different propaganda techniques used in it. This problem belongs to multi-label classification. For our solution, we approached leveraging different transformer based pre-trained language models with fine-tuning to solve this problem. We found that MARBERTv2 outperforms in terms of performance where F1-macro is 0.08175 and F1-micro is 0.61116 compared to other language models that we considered. Our method achieved rank 4 in the testing phase of the challenge.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the approach taken for the shared task on Propaganda Detection in Arabic at the Seventh Arabic Natural Language Processing Workshop (WANLP 2022). We participated in Sub-task 1 where the text of a tweet is provided, and the goal is to identify the different propaganda techniques used in it. This problem belongs to multi-label classification. For our solution, we approached leveraging different transformer based pre-trained language models with fine-tuning to solve this problem. We found that MARBERTv2 outperforms in terms of performance where F1-macro is 0.08175 and F1-micro is 0.61116 compared to other language models that we considered. Our method achieved rank 4 in the testing phase of the challenge.
AraProp在WANLP 2022共享任务:利用预训练的语言模型进行阿拉伯语宣传检测
本文介绍了第七届阿拉伯语自然语言处理研讨会(WANLP 2022)上阿拉伯语宣传检测的共同任务所采取的方法。我们参与了提供tweet文本的子任务1,目标是识别其中使用的不同宣传技术。这个问题属于多标签分类。对于我们的解决方案,我们利用不同的基于转换器的预训练语言模型来解决这个问题。我们发现,与我们考虑的其他语言模型相比,MARBERTv2在性能方面表现出色,其中F1-macro为0.08175,F1-micro为0.61116。我们的方法在挑战的测试阶段获得了第4名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信