A method for correcting illumination unevenness of solar image

Xiaona Fu, Kaifan Ji, Yunfei Yang, W. Duan, H. Deng, Xiaoli Zhang
{"title":"A method for correcting illumination unevenness of solar image","authors":"Xiaona Fu, Kaifan Ji, Yunfei Yang, W. Duan, H. Deng, Xiaoli Zhang","doi":"10.1109/ICSESS.2017.8342903","DOIUrl":null,"url":null,"abstract":"Traditional correction methods can not be used to correct effectively the solar images with uneven illumination, such as the bilinear interpolation method. We adopt an improved algorithm that combine the background fitting method and the mask method. The algorithm consists of the following main steps: segmenting the image, selecting the sampling points, interpolating the sampling points, calculating the mask, correcting the image. By comparing four evaluation indicators of the corrected image, including the information entropy of the image, the mean brightness, the mean variance and the peak signal-to-noise ratio (PSNR), this improved algorithm is proved to be effectively in the solar images with uneven illumination.","PeriodicalId":179815,"journal":{"name":"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2017.8342903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional correction methods can not be used to correct effectively the solar images with uneven illumination, such as the bilinear interpolation method. We adopt an improved algorithm that combine the background fitting method and the mask method. The algorithm consists of the following main steps: segmenting the image, selecting the sampling points, interpolating the sampling points, calculating the mask, correcting the image. By comparing four evaluation indicators of the corrected image, including the information entropy of the image, the mean brightness, the mean variance and the peak signal-to-noise ratio (PSNR), this improved algorithm is proved to be effectively in the solar images with uneven illumination.
一种校正太阳像照度不均匀的方法
传统的校正方法如双线性插值法不能有效地校正光照不均匀的太阳图像。我们采用了一种将背景拟合法和掩模法相结合的改进算法。该算法包括以下几个主要步骤:图像分割、采样点选择、采样点插值、掩码计算、图像校正。通过对校正后图像的信息熵、平均亮度、平均方差和峰值信噪比(PSNR) 4个评价指标的比较,证明了改进算法在光照不均匀的太阳图像中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信