Debiasing Word Embeddings from Sentiment Associations in Names

C. Hube, Maximilian Idahl, B. Fetahu
{"title":"Debiasing Word Embeddings from Sentiment Associations in Names","authors":"C. Hube, Maximilian Idahl, B. Fetahu","doi":"10.1145/3336191.3371779","DOIUrl":null,"url":null,"abstract":"Word embeddings, trained through models like skip-gram, have shown to be prone to capturing the biases from the training corpus, e.g. gender bias. Such biases are unwanted as they spill in downstream tasks, thus, leading to discriminatory behavior. In this work, we address the problem of prior sentiment associated with names in word embeddings where for a given name representation (e.g. \"Smith\"), a sentiment classifier will categorize it as either positive or negative. We propose DebiasEmb, a skip-gram based word embedding approach that, for a given oracle sentiment classification model, will debias the name representations, such that they cannot be associated with either positive or negative sentiment. Evaluation on standard word embedding benchmarks and a downstream analysis show that our approach is able to maintain a high quality of embeddings and at the same time mitigate sentiment bias in name embeddings.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Word embeddings, trained through models like skip-gram, have shown to be prone to capturing the biases from the training corpus, e.g. gender bias. Such biases are unwanted as they spill in downstream tasks, thus, leading to discriminatory behavior. In this work, we address the problem of prior sentiment associated with names in word embeddings where for a given name representation (e.g. "Smith"), a sentiment classifier will categorize it as either positive or negative. We propose DebiasEmb, a skip-gram based word embedding approach that, for a given oracle sentiment classification model, will debias the name representations, such that they cannot be associated with either positive or negative sentiment. Evaluation on standard word embedding benchmarks and a downstream analysis show that our approach is able to maintain a high quality of embeddings and at the same time mitigate sentiment bias in name embeddings.
从人名的情感关联中去除词嵌入的偏见
通过skip-gram等模型训练的词嵌入,已经显示出容易从训练语料库中捕获偏见,例如性别偏见。这种偏见是不希望的,因为它们会溢出到下游任务中,从而导致歧视行为。在这项工作中,我们解决了词嵌入中与名称相关的先验情感问题,其中对于给定的名称表示(例如:“史密斯”),情感分类器会将其分类为积极或消极。我们提出了DebiasEmb,这是一种基于跳过图的词嵌入方法,对于给定的oracle情感分类模型,它将去偏向名称表示,这样它们就不能与积极或消极的情感相关联。对标准词嵌入基准的评估和下游分析表明,我们的方法能够保持高质量的嵌入,同时减轻名称嵌入中的情感偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信