Fault-Tolerant Control of Three-Phase Bidirectional Current-Fed Dual Active Bridge DC-DC Converter

T. Le, Minh‐Khai Nguyen, Caisheng Wang, Sewan Choi
{"title":"Fault-Tolerant Control of Three-Phase Bidirectional Current-Fed Dual Active Bridge DC-DC Converter","authors":"T. Le, Minh‐Khai Nguyen, Caisheng Wang, Sewan Choi","doi":"10.1109/ITEC51675.2021.9490140","DOIUrl":null,"url":null,"abstract":"Fault-tolerant methods have been recognized for improving the reliability of multi-phase bidirectional DC-DC converters, including current-fed and voltage-fed dual active bridge converters. Fault-tolerant research for voltage-fed dual active bridge converters has caught much attention recently. However, few fault-tolerant methods for current-fed dual active bridge (CF-DAB) converter have been developed because it becomes more challenging due to the asymmetrical structure between primary and secondary sides. In this paper, a new fault-tolerant CF-DAB converter with blocking capacitors is proposed. The operation of the converter when an open-circuit fault occurs in different fault scenarios of the CF-DAB converter is comprehensively analyzed. A frozen phase fault-tolerant method with additional blocking capacitors on both sides of the transformer is proposed. The aim of the use of blocking capacitors is to block the DC current component of the filter inductor from passing through the transformer, which could otherwise result in the saturation of the transformer. Also, the DC blocking capacitors help isolate the faulty phase when the frozen-phase fault-tolerant method is applied.","PeriodicalId":339989,"journal":{"name":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC51675.2021.9490140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fault-tolerant methods have been recognized for improving the reliability of multi-phase bidirectional DC-DC converters, including current-fed and voltage-fed dual active bridge converters. Fault-tolerant research for voltage-fed dual active bridge converters has caught much attention recently. However, few fault-tolerant methods for current-fed dual active bridge (CF-DAB) converter have been developed because it becomes more challenging due to the asymmetrical structure between primary and secondary sides. In this paper, a new fault-tolerant CF-DAB converter with blocking capacitors is proposed. The operation of the converter when an open-circuit fault occurs in different fault scenarios of the CF-DAB converter is comprehensively analyzed. A frozen phase fault-tolerant method with additional blocking capacitors on both sides of the transformer is proposed. The aim of the use of blocking capacitors is to block the DC current component of the filter inductor from passing through the transformer, which could otherwise result in the saturation of the transformer. Also, the DC blocking capacitors help isolate the faulty phase when the frozen-phase fault-tolerant method is applied.
三相双向电流馈电双有源桥式DC-DC变换器的容错控制
容错方法已被公认为提高多相双向DC-DC变换器的可靠性,包括电流馈电和电压馈电双有源桥式变换器。电压馈电双有源桥式变换器的容错研究近年来受到广泛关注。然而,电流馈电双有源桥式(CF-DAB)变换器的容错方法很少,因为其主次侧结构的不对称使容错变得更加具有挑战性。本文提出了一种新型容错电容式CF-DAB变换器。综合分析了CF-DAB变换器在不同故障场景下发生开路故障时的运行情况。提出了一种在变压器两侧附加阻塞电容的冻结相容错方法。使用阻塞电容器的目的是阻止滤波器电感的直流电流分量通过变压器,否则可能导致变压器饱和。此外,直流阻塞电容器有助于隔离故障相时,冻结相容错方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信