{"title":"Nucleation and growth of deformation twins: A perspective based on the double-cross-slip mechanism of deformation twinning","authors":"K. Lagerlöf, J. Castaing, P. Pirouz, A. Heuer","doi":"10.1080/01418610208240069","DOIUrl":null,"url":null,"abstract":"Abstract The nucleation and growth of deformation twins are discussed, assuming that twinning occurs via the double-cross-slip mechanism first postulated by Pirouz for twinning in silicon. The dislocation energetics in this model are described in detail. In all cases, dislocation dissociation occurs and gives rise to a stationary partial and a twinning partial; twin growth involves the twinning partial undergoing double cross-slip. We discuss three specific geometries: firstly, the dissociation of a perfect dislocation into three collinear partials of equal Burgers vectors, which describes basal twinning in sapphire and twinning in bcc metals; secondly, the dissociation of a perfect dislocation into two collinear partials with different Burgers vectors, which describes rhombohedral twinning in sapphire; thirdly, the dissociation of a perfect dislocation into two non-collinear Shockley partials, which is used to describe twinning in silicon. Finally, the double-cross-slip mechanism readily explains the formation of emissary dislocations at the twin-matrix interface of deformation twins in bcc metals.","PeriodicalId":114492,"journal":{"name":"Philosophical Magazine A","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01418610208240069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111
Abstract
Abstract The nucleation and growth of deformation twins are discussed, assuming that twinning occurs via the double-cross-slip mechanism first postulated by Pirouz for twinning in silicon. The dislocation energetics in this model are described in detail. In all cases, dislocation dissociation occurs and gives rise to a stationary partial and a twinning partial; twin growth involves the twinning partial undergoing double cross-slip. We discuss three specific geometries: firstly, the dissociation of a perfect dislocation into three collinear partials of equal Burgers vectors, which describes basal twinning in sapphire and twinning in bcc metals; secondly, the dissociation of a perfect dislocation into two collinear partials with different Burgers vectors, which describes rhombohedral twinning in sapphire; thirdly, the dissociation of a perfect dislocation into two non-collinear Shockley partials, which is used to describe twinning in silicon. Finally, the double-cross-slip mechanism readily explains the formation of emissary dislocations at the twin-matrix interface of deformation twins in bcc metals.