Optimal impedance control for robot-aided rehabilitation of walking based on estimation of patient behavior

W. D. Santos, A. Siqueira
{"title":"Optimal impedance control for robot-aided rehabilitation of walking based on estimation of patient behavior","authors":"W. D. Santos, A. Siqueira","doi":"10.1109/BIOROB.2016.7523765","DOIUrl":null,"url":null,"abstract":"This paper deals with optimal impedance control of robotic devices designed for rehabilitation of walking after stroke. The proposed optimal solution is based on the estimation of torque and impedance parameters of the patient during the gait. The patient's torque is estimated using the generalized momenta-based disturbance observer associated with the Kalman filter algorithm. The stiffness and damping parameters are determined by the least square method, considering that the patient motor control is modeled as an impedance control, with a predefined gait-pattern as the desired trajectory of the joints. An optimization procedure is then performed after each step to tune the impedance parameters of the actuators' controller for the next step. In order to validate the proposed approach, simulation results considering a patient wearing an active hip/knee/ankle orthosis is presented, where several patient and robot conditions are evaluated for a set of steps.","PeriodicalId":235222,"journal":{"name":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOROB.2016.7523765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper deals with optimal impedance control of robotic devices designed for rehabilitation of walking after stroke. The proposed optimal solution is based on the estimation of torque and impedance parameters of the patient during the gait. The patient's torque is estimated using the generalized momenta-based disturbance observer associated with the Kalman filter algorithm. The stiffness and damping parameters are determined by the least square method, considering that the patient motor control is modeled as an impedance control, with a predefined gait-pattern as the desired trajectory of the joints. An optimization procedure is then performed after each step to tune the impedance parameters of the actuators' controller for the next step. In order to validate the proposed approach, simulation results considering a patient wearing an active hip/knee/ankle orthosis is presented, where several patient and robot conditions are evaluated for a set of steps.
基于患者行为估计的机器人辅助步行康复最优阻抗控制
研究了脑卒中后步行康复机器人装置的最优阻抗控制问题。所提出的最优解是基于对患者步态过程中扭矩和阻抗参数的估计。利用基于广义动量的干扰观测器与卡尔曼滤波算法相结合来估计患者的转矩。考虑到患者电机控制建模为阻抗控制,以预定义的步态模式作为关节的期望轨迹,采用最小二乘法确定刚度和阻尼参数。然后在每一步之后执行优化程序,以调整执行器控制器的阻抗参数以进行下一步。为了验证所提出的方法,给出了考虑佩戴主动髋关节/膝关节/踝关节矫形器的患者的仿真结果,其中对患者和机器人的几种情况进行了一组步骤评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信