Day-ahead battery scheduling in microgrid considering wind power uncertainty using ordinal optimization

Qianyao Xu, Ning Zhang, C. Kang, Ruoyang Wang, Jiangran Wang, Zhengpai Cui, Zhigang Yang
{"title":"Day-ahead battery scheduling in microgrid considering wind power uncertainty using ordinal optimization","authors":"Qianyao Xu, Ning Zhang, C. Kang, Ruoyang Wang, Jiangran Wang, Zhengpai Cui, Zhigang Yang","doi":"10.1109/NAPS.2014.6965428","DOIUrl":null,"url":null,"abstract":"This paper introduces the Ordinal Optimization (OO) theory into the microgrid operation, considering the wind power uncertainty. An energy balance model is established to obtain a day-ahead battery scheduling. Comparing with the stochastic optimization and the robust optimization, the OO method has the advantages of neither requiring a huge computation burden, nor resulting in an unexpectedly high operating cost. Case studies on different algorithms have been done in the paper. The results show that the OO method outperforms the stochastic and robust solutions, with a more reasonable operating cost while without compromising the microgrid reliability.","PeriodicalId":421766,"journal":{"name":"2014 North American Power Symposium (NAPS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2014.6965428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper introduces the Ordinal Optimization (OO) theory into the microgrid operation, considering the wind power uncertainty. An energy balance model is established to obtain a day-ahead battery scheduling. Comparing with the stochastic optimization and the robust optimization, the OO method has the advantages of neither requiring a huge computation burden, nor resulting in an unexpectedly high operating cost. Case studies on different algorithms have been done in the paper. The results show that the OO method outperforms the stochastic and robust solutions, with a more reasonable operating cost while without compromising the microgrid reliability.
考虑风力发电不确定性的微电网日前电池调度
考虑风力发电的不确定性,将有序优化(OO)理论引入到微网运行中。建立了能量平衡模型,得到了电池日前调度方案。与随机优化和鲁棒优化相比,面向对象方法具有不需要庞大的计算负担,也不会导致意外的高运行成本的优点。本文对不同算法进行了实例研究。结果表明,OO方法在不影响微网可靠性的前提下,具有更合理的运行成本,优于随机鲁棒方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信