Eliminating user-interaction in probability density estimation

K. Barbé, Lee Gonzales Fuentes, L. Barford, W. Moer
{"title":"Eliminating user-interaction in probability density estimation","authors":"K. Barbé, Lee Gonzales Fuentes, L. Barford, W. Moer","doi":"10.1109/I2MTC.2013.6555622","DOIUrl":null,"url":null,"abstract":"Despite the extensive literature, describing the probability content of measurements remains an important topic for engineering problems. The histogram remains the golden standard, even though kernel density estimation is a strong competitor when smooth estimates are desired. Critical user interaction is required for the use of both the histograms and kernel densities. A good choice for the bandwidth is essential in both cases. On top of that the kernel density method requires a proper choice of the kernel. Incorrect choices may lead to incorrect results generated by either masking important details or introducing false details. In this paper, we propose a new approach which requires no user-defined choices. The method is therefore fully automatic and provides the user a smooth density estimate of the probability content.","PeriodicalId":432388,"journal":{"name":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2013.6555622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Despite the extensive literature, describing the probability content of measurements remains an important topic for engineering problems. The histogram remains the golden standard, even though kernel density estimation is a strong competitor when smooth estimates are desired. Critical user interaction is required for the use of both the histograms and kernel densities. A good choice for the bandwidth is essential in both cases. On top of that the kernel density method requires a proper choice of the kernel. Incorrect choices may lead to incorrect results generated by either masking important details or introducing false details. In this paper, we propose a new approach which requires no user-defined choices. The method is therefore fully automatic and provides the user a smooth density estimate of the probability content.
在概率密度估计中消除用户交互
尽管有大量的文献,描述测量的概率内容仍然是工程问题的一个重要课题。直方图仍然是黄金标准,即使当需要平滑估计时,核密度估计是一个强有力的竞争对手。直方图和核密度的使用都需要关键的用户交互。在这两种情况下,良好的带宽选择都是必不可少的。最重要的是,核密度方法需要正确选择核。不正确的选择可能会导致不正确的结果,要么掩盖重要的细节,要么引入错误的细节。在本文中,我们提出了一种不需要用户自定义选择的新方法。因此,该方法是全自动的,并为用户提供了概率内容的平滑密度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信