An Efficient GPU Implementation for Large Scale Individual-Based Simulation of Collective Behavior

U. Erra, Bernardino Frola, V. Scarano, I. Couzin
{"title":"An Efficient GPU Implementation for Large Scale Individual-Based Simulation of Collective Behavior","authors":"U. Erra, Bernardino Frola, V. Scarano, I. Couzin","doi":"10.1109/HIBI.2009.11","DOIUrl":null,"url":null,"abstract":"In this work we describe a GPU implementation for an individual-based model for fish schooling. In this model each fish aligns its position and orientation with an appropriate average of its neighbors’ positions and orientations. This carries a very high computational cost in the so-called nearest neighbors search. By leveraging the GPU processing power and the new programming model called CUDA we implement an efficient framework which permits to simulate the collective motion of high-density individual groups. In particular we present as a case study a simulation of motion of millions of fishes. We describe our implementation and present extensive experiments which demonstrate the effectiveness of our GPU implementation.","PeriodicalId":403061,"journal":{"name":"2009 International Workshop on High Performance Computational Systems Biology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on High Performance Computational Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIBI.2009.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

In this work we describe a GPU implementation for an individual-based model for fish schooling. In this model each fish aligns its position and orientation with an appropriate average of its neighbors’ positions and orientations. This carries a very high computational cost in the so-called nearest neighbors search. By leveraging the GPU processing power and the new programming model called CUDA we implement an efficient framework which permits to simulate the collective motion of high-density individual groups. In particular we present as a case study a simulation of motion of millions of fishes. We describe our implementation and present extensive experiments which demonstrate the effectiveness of our GPU implementation.
大规模基于个体的集体行为模拟的高效GPU实现
在这项工作中,我们描述了一个基于个体的鱼群模型的GPU实现。在这个模型中,每条鱼都将自己的位置和方向与邻居的位置和方向的适当平均值保持一致。在所谓的最近邻搜索中,这带来了非常高的计算成本。通过利用GPU的处理能力和新的编程模型CUDA,我们实现了一个有效的框架,允许模拟高密度个体群体的集体运动。特别是,我们提出了一个案例研究的运动数以百万计的鱼的模拟。我们描述了我们的实现,并提出了大量的实验来证明我们的GPU实现的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信