Leveraging Google BERT to Detect and Measure Innovation Discussed in News Articles

Keyu Chen, Benjamin Cosgro, Oretha Domfeh, Alex Stern, Gizem Korkmaz, Neil Alexander Kattampallil
{"title":"Leveraging Google BERT to Detect and Measure Innovation Discussed in News Articles","authors":"Keyu Chen, Benjamin Cosgro, Oretha Domfeh, Alex Stern, Gizem Korkmaz, Neil Alexander Kattampallil","doi":"10.1109/SIEDS52267.2021.9483744","DOIUrl":null,"url":null,"abstract":"In this paper, we leverage non-survey data (i.e., news articles), natural language processing (NLP), and deep learning methods to detect and measure innovation, ultimately enriching innovation surveys. Our dataset is composed of 1.9M news articles published between 2013 and 2018 acquired from Dow Jones Data, News, and Analytics. We use Bidirectional Encoder Representation from Transformers (BERT), a neural network-based technique for NLP pre-training developed by Google. Our methods involve: (i) utilizing Google’s BERT as a binary classifier to identify articles that mention innovation, (ii) developing BERT’s named-entity recognition algorithm to extract company names from these articles, (iii) leveraging BERT’s question and answering capabilities to extract company and product names. As a result, we obtain innovation indicators, i.e., company innovations in the pharmaceutical sector.","PeriodicalId":426747,"journal":{"name":"2021 Systems and Information Engineering Design Symposium (SIEDS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Systems and Information Engineering Design Symposium (SIEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIEDS52267.2021.9483744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we leverage non-survey data (i.e., news articles), natural language processing (NLP), and deep learning methods to detect and measure innovation, ultimately enriching innovation surveys. Our dataset is composed of 1.9M news articles published between 2013 and 2018 acquired from Dow Jones Data, News, and Analytics. We use Bidirectional Encoder Representation from Transformers (BERT), a neural network-based technique for NLP pre-training developed by Google. Our methods involve: (i) utilizing Google’s BERT as a binary classifier to identify articles that mention innovation, (ii) developing BERT’s named-entity recognition algorithm to extract company names from these articles, (iii) leveraging BERT’s question and answering capabilities to extract company and product names. As a result, we obtain innovation indicators, i.e., company innovations in the pharmaceutical sector.
利用Google BERT检测和衡量新闻文章中讨论的创新
在本文中,我们利用非调查数据(即新闻文章)、自然语言处理(NLP)和深度学习方法来检测和衡量创新,最终丰富创新调查。我们的数据集由2013年至2018年间发布的190万篇新闻文章组成,这些文章来自道琼斯数据、新闻和分析公司。我们使用了来自变形金刚的双向编码器表示(BERT),这是谷歌开发的一种基于神经网络的NLP预训练技术。我们的方法包括:(i)利用Google的BERT作为二元分类器来识别提到创新的文章,(ii)开发BERT的命名实体识别算法来从这些文章中提取公司名称,(iii)利用BERT的问答功能来提取公司和产品名称。因此,我们获得了创新指标,即制药行业的公司创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信