{"title":"Energy-efficient and Privacy-aware Social Distance Monitoring with Low-resolution Infrared Sensors and Adaptive Inference","authors":"Chen Xie, D. J. Pagliari, A. Calimera","doi":"10.48550/arXiv.2204.10539","DOIUrl":null,"url":null,"abstract":"Low-resolution infrared (IR) Sensors combined with machine learning (ML) can be leveraged to implement privacy-preserving social distance monitoring solutions in indoor spaces. However, the need of executing these applications on Internet of Things (IoT) edge nodes makes energy consumption critical. In this work, we propose an energy-efficient adaptive inference solution consisting of the cascade of a simple wake-up trigger and a 8-bit quantized Convolutional Neural Network (CNN), which is only invoked for difficult-to-classify frames. Deploying such adaptive system on a IoT Microcontroller, we show that, when processing the output of a $8\\times 8$ low-resolution IR sensor, we are able to reduce the energy consumption by 37-57% with respect to a static CNN-based approach, with an accuracy drop of less than 2% (83% balanced accuracy).","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.10539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Low-resolution infrared (IR) Sensors combined with machine learning (ML) can be leveraged to implement privacy-preserving social distance monitoring solutions in indoor spaces. However, the need of executing these applications on Internet of Things (IoT) edge nodes makes energy consumption critical. In this work, we propose an energy-efficient adaptive inference solution consisting of the cascade of a simple wake-up trigger and a 8-bit quantized Convolutional Neural Network (CNN), which is only invoked for difficult-to-classify frames. Deploying such adaptive system on a IoT Microcontroller, we show that, when processing the output of a $8\times 8$ low-resolution IR sensor, we are able to reduce the energy consumption by 37-57% with respect to a static CNN-based approach, with an accuracy drop of less than 2% (83% balanced accuracy).