{"title":"CPU-style SIMD ray traversal on GPUs","authors":"Alexander Lier, M. Stamminger, Kai Selgrad","doi":"10.1145/3231578.3231583","DOIUrl":null,"url":null,"abstract":"In this paper we describe and evaluate an implementation of CPU-style SIMD ray traversal on the GPU. We show how spreading moderately wide BVHs (up to a branching factor of eight) across multiple threads in a warp can improve performance while not requiring expensive pre-processing. The presented ray-traversal method exhibits improved traversal performance especially for increasingly incoherent rays.","PeriodicalId":354787,"journal":{"name":"Proceedings of the Conference on High-Performance Graphics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High-Performance Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3231578.3231583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper we describe and evaluate an implementation of CPU-style SIMD ray traversal on the GPU. We show how spreading moderately wide BVHs (up to a branching factor of eight) across multiple threads in a warp can improve performance while not requiring expensive pre-processing. The presented ray-traversal method exhibits improved traversal performance especially for increasingly incoherent rays.