A novel CKF method for target tracking

Yiou Sun, Jingwen Xie, Junhai Guo, Haifang Wang, Yang Zhao
{"title":"A novel CKF method for target tracking","authors":"Yiou Sun, Jingwen Xie, Junhai Guo, Haifang Wang, Yang Zhao","doi":"10.1109/ICCWAMTIP.2014.7073361","DOIUrl":null,"url":null,"abstract":"This paper presents a new target tracking method. The presented method which named marginalized cubature Kalman filter is based on standard cubature Kalman filter and marginalized moment estimator. The marginalized moment estimator uses sigma-points sampling and Guass-Hermite integration to estimate the mean and covariance. The proposed algorithm which is called MCKF in short, uses marginalized moment estimator to calculate the state's mean and covariance in the CKF framework and gets a better accuracy and keep the covariance matrix being positive definite. Simulation indicates the presented algorithm's feasibility and improved performance.","PeriodicalId":211273,"journal":{"name":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","volume":"1149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing(ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2014.7073361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a new target tracking method. The presented method which named marginalized cubature Kalman filter is based on standard cubature Kalman filter and marginalized moment estimator. The marginalized moment estimator uses sigma-points sampling and Guass-Hermite integration to estimate the mean and covariance. The proposed algorithm which is called MCKF in short, uses marginalized moment estimator to calculate the state's mean and covariance in the CKF framework and gets a better accuracy and keep the covariance matrix being positive definite. Simulation indicates the presented algorithm's feasibility and improved performance.
一种新的CKF目标跟踪方法
本文提出了一种新的目标跟踪方法。提出了一种基于标准差分卡尔曼滤波和边缘矩估计的边缘差分卡尔曼滤波方法。边缘矩估计采用西格玛点采样和高斯-埃尔米特积分来估计均值和协方差。本文提出的算法简称MCKF,在CKF框架中使用边缘矩估计器计算状态均值和协方差,获得了较好的精度,并保持了协方差矩阵的正定。仿真结果表明了该算法的可行性和提高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信