Learning Text-Line Localization with Shared and Local Regression Neural Networks

Bastien Moysset, J. Louradour, Christopher Kermorvant, Christian Wolf
{"title":"Learning Text-Line Localization with Shared and Local Regression Neural Networks","authors":"Bastien Moysset, J. Louradour, Christopher Kermorvant, Christian Wolf","doi":"10.1109/ICFHR.2016.0014","DOIUrl":null,"url":null,"abstract":"Text line detection and localisation is a crucial step for full page document analysis, but still suffers from heterogeneity of real life documents. In this paper, we present a novel approach for text line localisation based on Convolutional Neural Networks and Multidimensional Long Short-Term Memory cells as a regressor in order to predict the coordinates of the text line bounding boxes directly from the pixel values. Targeting typically large images in document image analysis, we propose a new model using weight sharing over local blocks. We compare two strategies: directly predicting the four coordinates or predicting lower-left and upper-right points separately followed by matching. We evaluate our work on the highly unconstrained Maurdor dataset and show that our method outperforms both other machine learning and image processing methods.","PeriodicalId":194844,"journal":{"name":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2016.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Text line detection and localisation is a crucial step for full page document analysis, but still suffers from heterogeneity of real life documents. In this paper, we present a novel approach for text line localisation based on Convolutional Neural Networks and Multidimensional Long Short-Term Memory cells as a regressor in order to predict the coordinates of the text line bounding boxes directly from the pixel values. Targeting typically large images in document image analysis, we propose a new model using weight sharing over local blocks. We compare two strategies: directly predicting the four coordinates or predicting lower-left and upper-right points separately followed by matching. We evaluate our work on the highly unconstrained Maurdor dataset and show that our method outperforms both other machine learning and image processing methods.
用共享和局部回归神经网络学习文本行定位
文本行检测和定位是整页文档分析的关键步骤,但仍然受到实际文档异质性的影响。在本文中,我们提出了一种基于卷积神经网络和多维长短期记忆单元作为回归器的文本行定位新方法,以便直接从像素值预测文本行边界框的坐标。针对文档图像分析中典型的大图像,我们提出了一种基于局部块的权重共享的新模型。我们比较了两种策略:直接预测四个坐标或分别预测左下点和右上点,然后进行匹配。我们在高度无约束的Maurdor数据集上评估了我们的工作,并表明我们的方法优于其他机器学习和图像处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信