Gaussian scale-space dense disparity estimation with anisotropic disparity-field diffusion

Jangheon Kim, T. Sikora
{"title":"Gaussian scale-space dense disparity estimation with anisotropic disparity-field diffusion","authors":"Jangheon Kim, T. Sikora","doi":"10.1109/3DIM.2005.50","DOIUrl":null,"url":null,"abstract":"We present a new reliable dense disparity estimation algorithm which employs Gaussian scale-space with anisotropic disparity-field diffusion. This algorithm estimates edge-preserving dense disparity vectors using a diffusive method on iteratively Gaussian-filtered images with a scale, i.e. the Gaussian scale-space. While a Gaussian filter kernel generates a coarser resolution from stereo image pairs, only strong and meaningful boundaries are adoptively selected on the resolution of the filtered images. Then, coarse global disparity vectors are initialized using the boundary constraint. The per-pixel disparity vectors are iteratively obtained by the local adjustment of the global disparity vectors using an energy-minimization framework. The proposed algorithm preserves the boundaries while inner regions are smoothed using anisotropic disparity-field diffusion. In this work, the Gaussian scale-space efficiently avoids illegal matching on a large baseline by the restriction of the range. Moreover, it prevents the computation from iterating into local minima of ill-posed diffusion on large gradient areas e.g. shadow and texture region, etc. The experimental results prove the excellent localization performance preserving the disparity discontinuity of each object.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We present a new reliable dense disparity estimation algorithm which employs Gaussian scale-space with anisotropic disparity-field diffusion. This algorithm estimates edge-preserving dense disparity vectors using a diffusive method on iteratively Gaussian-filtered images with a scale, i.e. the Gaussian scale-space. While a Gaussian filter kernel generates a coarser resolution from stereo image pairs, only strong and meaningful boundaries are adoptively selected on the resolution of the filtered images. Then, coarse global disparity vectors are initialized using the boundary constraint. The per-pixel disparity vectors are iteratively obtained by the local adjustment of the global disparity vectors using an energy-minimization framework. The proposed algorithm preserves the boundaries while inner regions are smoothed using anisotropic disparity-field diffusion. In this work, the Gaussian scale-space efficiently avoids illegal matching on a large baseline by the restriction of the range. Moreover, it prevents the computation from iterating into local minima of ill-posed diffusion on large gradient areas e.g. shadow and texture region, etc. The experimental results prove the excellent localization performance preserving the disparity discontinuity of each object.
具有各向异性差场扩散的高斯尺度空间密集差估计
提出了一种新的可靠的密度视差估计算法,该算法采用高斯尺度空间和各向异性视差场扩散。该算法在高斯尺度空间(即高斯尺度空间)的迭代高斯滤波图像上,采用扩散方法估计保持边缘的密集视差向量。虽然高斯滤波核从立体图像对中产生较粗的分辨率,但在滤波图像的分辨率上只采用强且有意义的边界。然后,利用边界约束初始化粗全局视差向量。利用能量最小化框架对全局视差矢量进行局部调整,迭代得到逐像素视差矢量。该算法在保留边界的同时,利用各向异性差场扩散对内部区域进行平滑处理。在这项工作中,高斯尺度空间通过范围的限制有效地避免了在大基线上的非法匹配。此外,它还可以防止计算迭代到大梯度区域(如阴影和纹理区域)的病态扩散的局部最小值。实验结果证明了该方法具有良好的定位性能,同时保持了每个目标的视差不连续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信