{"title":"Machine Learning-based Prevention of Battery-oriented Illegitimate Task Injection in Mobile Crowdsensing","authors":"Yueqian Zhang, Murat Simsek, B. Kantarci","doi":"10.1145/3324921.3328786","DOIUrl":null,"url":null,"abstract":"Mobile crowdsensing (MCS) is a cloud-inspired and non-dedicated sensing paradigm to enable ubiquitous sensing via built-in sensors of personalized devices. Due to disparate participants and sensing tasks, MCS is vulnerable to threats initiated by malicious participants, which can either be a participant providing sensory data or an end user injecting a fake task aiming at resource (e.g. battery, sensor, etc.) clogging at the participating devices. This paper builds on machine learning-based detection of illegitimate tasks, and investigates the impact of machine learning-based prevention of battery-oriented illegitimate task injection in MCS campaigns. To this end, we introduce two different attack strategies, and test the impact of ML-based detection and elimination of fake tasks on task completion rate, as well as the overall battery drain of participating devices. Simulation results confirm that up to 14% battery power can be saved at the expense of a slight decrease in the completion rate of legitimate tasks.","PeriodicalId":435733,"journal":{"name":"Proceedings of the ACM Workshop on Wireless Security and Machine Learning","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324921.3328786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Mobile crowdsensing (MCS) is a cloud-inspired and non-dedicated sensing paradigm to enable ubiquitous sensing via built-in sensors of personalized devices. Due to disparate participants and sensing tasks, MCS is vulnerable to threats initiated by malicious participants, which can either be a participant providing sensory data or an end user injecting a fake task aiming at resource (e.g. battery, sensor, etc.) clogging at the participating devices. This paper builds on machine learning-based detection of illegitimate tasks, and investigates the impact of machine learning-based prevention of battery-oriented illegitimate task injection in MCS campaigns. To this end, we introduce two different attack strategies, and test the impact of ML-based detection and elimination of fake tasks on task completion rate, as well as the overall battery drain of participating devices. Simulation results confirm that up to 14% battery power can be saved at the expense of a slight decrease in the completion rate of legitimate tasks.