{"title":"Hotspot Cooling Performance of Two-Phase Confined Jet Impingement Cooling at the Stagnation Zone","authors":"T. Chowdhury, S. Putnam","doi":"10.1109/iTherm54085.2022.9899618","DOIUrl":null,"url":null,"abstract":"Jet impingement can be particularly effective for removing high heat fluxes from local hotspots. Two-phase jet impingement cooling combines the advantages of both the nucleate boiling heat transfer with the single-phase sensible cooling. This study investigates two-phase confined jet impingement cooling of local, laser-generated hotspots in a 100 nm thick Hafnium (Hf) thin film on glass. The jet/nozzle diameter is ∼1.2 mm and the normal distance between the nozzle outlet and the heated surface is ∼3.2 mm. The jet coolants studied are FC 72, Novec 7200, and Ethanol with jet nozzle outlet Reynolds numbers ranging from 250 to 5000. The hotspot area is ∼0.06 mm2 and the applied hotspot-to-jet heat fluxes range from 20 W/cm2 to 350 W/cm2. This heat flux range facilitates studies of both the single-phase and two-phase heat transport mechanisms for heat fluxes up to critical heat flux (CHF). The temporal evolution of the temperature distribution of the laser-heated surface is measured using infrared (IR) thermometry. This study focuses on the stagnation point heat transfer - i.e., the jet potential core is co-aligned with the hotspot center. For ethanol, the CHF is ∼315 W/cm2 at Re ∼1338 with a corresponding heat transfer coefficient of h ∼102 kW/m2 K. For FC 72, the CHF is ∼94 W/cm2 at Re∼ 5000 with• a corresponding h∼ 56 kW/m2.K. And for Novec 7200, the CHF is ∼108 W/cm2 at Re∼ 4600 with a corresponding h ∼ 50 kW/m2•K.","PeriodicalId":351706,"journal":{"name":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","volume":"81 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iTherm54085.2022.9899618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Jet impingement can be particularly effective for removing high heat fluxes from local hotspots. Two-phase jet impingement cooling combines the advantages of both the nucleate boiling heat transfer with the single-phase sensible cooling. This study investigates two-phase confined jet impingement cooling of local, laser-generated hotspots in a 100 nm thick Hafnium (Hf) thin film on glass. The jet/nozzle diameter is ∼1.2 mm and the normal distance between the nozzle outlet and the heated surface is ∼3.2 mm. The jet coolants studied are FC 72, Novec 7200, and Ethanol with jet nozzle outlet Reynolds numbers ranging from 250 to 5000. The hotspot area is ∼0.06 mm2 and the applied hotspot-to-jet heat fluxes range from 20 W/cm2 to 350 W/cm2. This heat flux range facilitates studies of both the single-phase and two-phase heat transport mechanisms for heat fluxes up to critical heat flux (CHF). The temporal evolution of the temperature distribution of the laser-heated surface is measured using infrared (IR) thermometry. This study focuses on the stagnation point heat transfer - i.e., the jet potential core is co-aligned with the hotspot center. For ethanol, the CHF is ∼315 W/cm2 at Re ∼1338 with a corresponding heat transfer coefficient of h ∼102 kW/m2 K. For FC 72, the CHF is ∼94 W/cm2 at Re∼ 5000 with• a corresponding h∼ 56 kW/m2.K. And for Novec 7200, the CHF is ∼108 W/cm2 at Re∼ 4600 with a corresponding h ∼ 50 kW/m2•K.