Hotspot Cooling Performance of Two-Phase Confined Jet Impingement Cooling at the Stagnation Zone

T. Chowdhury, S. Putnam
{"title":"Hotspot Cooling Performance of Two-Phase Confined Jet Impingement Cooling at the Stagnation Zone","authors":"T. Chowdhury, S. Putnam","doi":"10.1109/iTherm54085.2022.9899618","DOIUrl":null,"url":null,"abstract":"Jet impingement can be particularly effective for removing high heat fluxes from local hotspots. Two-phase jet impingement cooling combines the advantages of both the nucleate boiling heat transfer with the single-phase sensible cooling. This study investigates two-phase confined jet impingement cooling of local, laser-generated hotspots in a 100 nm thick Hafnium (Hf) thin film on glass. The jet/nozzle diameter is ∼1.2 mm and the normal distance between the nozzle outlet and the heated surface is ∼3.2 mm. The jet coolants studied are FC 72, Novec 7200, and Ethanol with jet nozzle outlet Reynolds numbers ranging from 250 to 5000. The hotspot area is ∼0.06 mm2 and the applied hotspot-to-jet heat fluxes range from 20 W/cm2 to 350 W/cm2. This heat flux range facilitates studies of both the single-phase and two-phase heat transport mechanisms for heat fluxes up to critical heat flux (CHF). The temporal evolution of the temperature distribution of the laser-heated surface is measured using infrared (IR) thermometry. This study focuses on the stagnation point heat transfer - i.e., the jet potential core is co-aligned with the hotspot center. For ethanol, the CHF is ∼315 W/cm2 at Re ∼1338 with a corresponding heat transfer coefficient of h ∼102 kW/m2 K. For FC 72, the CHF is ∼94 W/cm2 at Re∼ 5000 with• a corresponding h∼ 56 kW/m2.K. And for Novec 7200, the CHF is ∼108 W/cm2 at Re∼ 4600 with a corresponding h ∼ 50 kW/m2•K.","PeriodicalId":351706,"journal":{"name":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","volume":"81 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iTherm54085.2022.9899618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Jet impingement can be particularly effective for removing high heat fluxes from local hotspots. Two-phase jet impingement cooling combines the advantages of both the nucleate boiling heat transfer with the single-phase sensible cooling. This study investigates two-phase confined jet impingement cooling of local, laser-generated hotspots in a 100 nm thick Hafnium (Hf) thin film on glass. The jet/nozzle diameter is ∼1.2 mm and the normal distance between the nozzle outlet and the heated surface is ∼3.2 mm. The jet coolants studied are FC 72, Novec 7200, and Ethanol with jet nozzle outlet Reynolds numbers ranging from 250 to 5000. The hotspot area is ∼0.06 mm2 and the applied hotspot-to-jet heat fluxes range from 20 W/cm2 to 350 W/cm2. This heat flux range facilitates studies of both the single-phase and two-phase heat transport mechanisms for heat fluxes up to critical heat flux (CHF). The temporal evolution of the temperature distribution of the laser-heated surface is measured using infrared (IR) thermometry. This study focuses on the stagnation point heat transfer - i.e., the jet potential core is co-aligned with the hotspot center. For ethanol, the CHF is ∼315 W/cm2 at Re ∼1338 with a corresponding heat transfer coefficient of h ∼102 kW/m2 K. For FC 72, the CHF is ∼94 W/cm2 at Re∼ 5000 with• a corresponding h∼ 56 kW/m2.K. And for Novec 7200, the CHF is ∼108 W/cm2 at Re∼ 4600 with a corresponding h ∼ 50 kW/m2•K.
滞止区两相受限射流冲击冷却的热点冷却性能
射流撞击对于消除局部热点的高热流特别有效。两相射流冲击冷却结合了有核沸腾传热和单相显冷的优点。本研究研究了玻璃上100 nm厚的铪(Hf)薄膜中激光产生的局部热点的两相受限射流冲击冷却。射流/喷嘴直径为~ 1.2 mm,喷嘴出口与被加热表面之间的正常距离为~ 3.2 mm。所研究的射流冷却剂为FC 72、Novec 7200和乙醇,射流喷嘴出口雷诺数为250 ~ 5000。热点区域为~ 0.06 mm2,应用的热点-射流热流从20 W/cm2到350 W/cm2不等。该热流密度范围有利于研究达到临界热流密度(CHF)的单相和两相传热机制。利用红外测温技术测量了激光加热表面温度分布的时间演变。本文研究的重点是滞止点换热,即射流势核与热点中心共向。对于乙醇,在Re ~ 1338时CHF为~ 315 W/cm2,相应的传热系数为h ~ 102 kW/m2 K。对于FC 72,在Re ~ 5000下的CHF为~ 94 W/cm2,对应的h ~ 56 kW/m2.K。对于Novec 7200, Re ~ 4600的CHF为~ 108 W/cm2,对应的h ~ 50 kW/m2•K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信