On a development of sparse PCA method for face recognition problem

L. Tran, Bich Ngo, Tuan Tran, L. Pham, An Mai
{"title":"On a development of sparse PCA method for face recognition problem","authors":"L. Tran, Bich Ngo, Tuan Tran, L. Pham, An Mai","doi":"10.1109/atc52653.2021.9598326","DOIUrl":null,"url":null,"abstract":"Face recognition is a very significant branch of application in the pattern recognition area. It has multiple applications in the military and finance, to name a few. In reality, sometimes we have to deal with sparse representation of the facial data. In this paper, to deal with sparsity, two advanced versions of Sparse PCA are developed, including Proximal Gradient Sparse PCA (PG Sparse PCA) and Fast Iterative Shrinkage-Thresholding Algorithm Sparse PCA (FISTA Sparse PCA). Then they will be respectively applied to solve the face recognition problem by considering their combination with nearest-neighbor method and with the kernel ridge regression method. Experimental results illustrate that the accuracies of PG Sparse PCA and FISTA Sparse PCA are equivalent in the combination with nearest-neighbor, while PG Sparse PCA performs better than FISTA Sparse PCA in the case of using kernel ridge regression. However, we recognize that the computing process of FISTA Sparse PCA, on average, is always faster than the PG sparse PCA version due to the use of a fast proximal gradient version.","PeriodicalId":196900,"journal":{"name":"2021 International Conference on Advanced Technologies for Communications (ATC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/atc52653.2021.9598326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Face recognition is a very significant branch of application in the pattern recognition area. It has multiple applications in the military and finance, to name a few. In reality, sometimes we have to deal with sparse representation of the facial data. In this paper, to deal with sparsity, two advanced versions of Sparse PCA are developed, including Proximal Gradient Sparse PCA (PG Sparse PCA) and Fast Iterative Shrinkage-Thresholding Algorithm Sparse PCA (FISTA Sparse PCA). Then they will be respectively applied to solve the face recognition problem by considering their combination with nearest-neighbor method and with the kernel ridge regression method. Experimental results illustrate that the accuracies of PG Sparse PCA and FISTA Sparse PCA are equivalent in the combination with nearest-neighbor, while PG Sparse PCA performs better than FISTA Sparse PCA in the case of using kernel ridge regression. However, we recognize that the computing process of FISTA Sparse PCA, on average, is always faster than the PG sparse PCA version due to the use of a fast proximal gradient version.
稀疏PCA方法在人脸识别中的发展
人脸识别是模式识别领域中一个非常重要的应用分支。它在军事和金融领域有多种应用,仅举几例。在现实中,有时我们必须处理面部数据的稀疏表示。为了解决稀疏性问题,本文提出了两种改进的稀疏主成分分析方法,即近端梯度稀疏主成分分析(PG稀疏主成分分析)和快速迭代缩水阈值算法稀疏主成分分析(FISTA稀疏主成分分析)。然后将其与最近邻法和核脊回归法结合,分别应用于人脸识别问题。实验结果表明,PG稀疏主成分分析与FISTA稀疏主成分分析在结合最近邻的情况下准确率相当,而PG稀疏主成分分析在使用核脊回归的情况下优于FISTA稀疏主成分分析。然而,我们认识到,由于使用了快速的近端梯度版本,平均而言,fisa稀疏PCA的计算过程总是比PG稀疏PCA更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信