X. Wang, S. Habert, Meng Ma, C. Huang, P. Fallavollita, N. Navab
{"title":"[POSTER] RGB-D/C-arm Calibration and Application in Medical Augmented Reality","authors":"X. Wang, S. Habert, Meng Ma, C. Huang, P. Fallavollita, N. Navab","doi":"10.1109/ISMAR.2015.31","DOIUrl":null,"url":null,"abstract":"Calibration and registration are the first steps for augmented reality and mixed reality applications. In the medical field, the calibration between an RGB-D camera and a mobile C-arm fluoroscope is a new topic which introduces challenges. In this paper, we propose a precise 3D/2D calibration method to achieve a video augmented fluoroscope. With the design of a suitable calibration phantom for RGB-D/C-arm calibration, we calculate the projection matrix from the depth camera coordinates to the X-ray image. Through a comparison experiment by combining different steps leading to the calibration, we evaluate the effect of every step of our calibration process. Results demonstrated that we obtain a calibration RMS error of 0.54±1.40 mm which is promising for surgical applications. We conclude this paper by showcasing two clinical applications. One is a markerless registration application, the other is an RGB-D camera augmented mobile C-arm visualization.","PeriodicalId":240196,"journal":{"name":"2015 IEEE International Symposium on Mixed and Augmented Reality","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Mixed and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2015.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Calibration and registration are the first steps for augmented reality and mixed reality applications. In the medical field, the calibration between an RGB-D camera and a mobile C-arm fluoroscope is a new topic which introduces challenges. In this paper, we propose a precise 3D/2D calibration method to achieve a video augmented fluoroscope. With the design of a suitable calibration phantom for RGB-D/C-arm calibration, we calculate the projection matrix from the depth camera coordinates to the X-ray image. Through a comparison experiment by combining different steps leading to the calibration, we evaluate the effect of every step of our calibration process. Results demonstrated that we obtain a calibration RMS error of 0.54±1.40 mm which is promising for surgical applications. We conclude this paper by showcasing two clinical applications. One is a markerless registration application, the other is an RGB-D camera augmented mobile C-arm visualization.