Automatic Conversation Turn-Taking Segmentation in Semantic Facet

Dongin Jung, Yoon-Sik Cho
{"title":"Automatic Conversation Turn-Taking Segmentation in Semantic Facet","authors":"Dongin Jung, Yoon-Sik Cho","doi":"10.1109/ICEIC57457.2023.10049858","DOIUrl":null,"url":null,"abstract":"Turn-taking is a significant aspect of a smooth conversation system. Detecting end-of-turn can be difficult for automatic conversation systems, and this can cause misleading conversation systems. To make a conversational system recognizing turn transition points, we propose a token-level turn-taking segmentation using linguistic features. This task imitates the automatic speech recognition environment by organizing several settings. Moreover, we utilize GPT-2, which is well known as a pretrained generative language model, to be able to predict in token-level live text stream. We evaluate our model compared to RNN series models in general conversation datasets and explore model prediction with test sample scenarios.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Turn-taking is a significant aspect of a smooth conversation system. Detecting end-of-turn can be difficult for automatic conversation systems, and this can cause misleading conversation systems. To make a conversational system recognizing turn transition points, we propose a token-level turn-taking segmentation using linguistic features. This task imitates the automatic speech recognition environment by organizing several settings. Moreover, we utilize GPT-2, which is well known as a pretrained generative language model, to be able to predict in token-level live text stream. We evaluate our model compared to RNN series models in general conversation datasets and explore model prediction with test sample scenarios.
语义面会话自动分词
轮流是流畅对话系统的一个重要方面。自动对话系统很难检测到回合结束,这可能会导致对话系统产生误导。为了使会话系统能够识别转折点,我们提出了一种基于语言特征的符号级转折分割方法。这个任务通过组织几个设置来模拟自动语音识别环境。此外,我们利用GPT-2,这是众所周知的预训练生成语言模型,能够在令牌级实时文本流中进行预测。我们将我们的模型与常规会话数据集中的RNN系列模型进行比较,并通过测试样本场景探索模型预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信