{"title":"Automatic Conversation Turn-Taking Segmentation in Semantic Facet","authors":"Dongin Jung, Yoon-Sik Cho","doi":"10.1109/ICEIC57457.2023.10049858","DOIUrl":null,"url":null,"abstract":"Turn-taking is a significant aspect of a smooth conversation system. Detecting end-of-turn can be difficult for automatic conversation systems, and this can cause misleading conversation systems. To make a conversational system recognizing turn transition points, we propose a token-level turn-taking segmentation using linguistic features. This task imitates the automatic speech recognition environment by organizing several settings. Moreover, we utilize GPT-2, which is well known as a pretrained generative language model, to be able to predict in token-level live text stream. We evaluate our model compared to RNN series models in general conversation datasets and explore model prediction with test sample scenarios.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Turn-taking is a significant aspect of a smooth conversation system. Detecting end-of-turn can be difficult for automatic conversation systems, and this can cause misleading conversation systems. To make a conversational system recognizing turn transition points, we propose a token-level turn-taking segmentation using linguistic features. This task imitates the automatic speech recognition environment by organizing several settings. Moreover, we utilize GPT-2, which is well known as a pretrained generative language model, to be able to predict in token-level live text stream. We evaluate our model compared to RNN series models in general conversation datasets and explore model prediction with test sample scenarios.