{"title":"A novel model of acetaminophen-induced acute hepatic failure in rabbits.","authors":"T. Rahman, A. Selden, H. Hodgson","doi":"10.1006/JSRE.2002.6476","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nFew reliable and reproducible animal models of acute hepatic failure exist or conform to the criteria proposed by Terblanche and Hickman (Dig. Dis. Sci. 36: 770, 1991). In this prospective randomized study we describe the selective induction of CYP450 enzymes, depletion of glutathione, and hepatotoxic insult using acetaminophen in the development and characterization of a novel rabbit model of acute hepatic failure.\n\n\nMATERIALS AND METHODS\nMale New Zealand white rabbits weighing 3-5 kg were used. After preliminary dose ranging experiments, two groups of New Zealand white (n = 8 in each group) rabbits had CYP450 induction with phenobarbitone (40 mg/kg ip for 5 days) or with 20-methylcholanthrene (80 mg/kg ip). The glutathione synthetase inhibitor buthionine sulfoxime (2 mmol/kg iv) was then administered prior to acetaminophen administration (500 mg/kg sc). Clinical observations were recorded and arterial blood was sampled over 72 h.\n\n\nRESULTS\nGrade I-III encephalopathy occurred at 5-12, 12-25, and 28-56 h, respectively, in animals pretreated with 20-methylcholanthrene, but not in the phenobarbitone pretreated group. Mortality was 75% in the 20-methylcholanthrene group compared to 0% in the phenobarbitone group. Blood lactate (P < 0.05), prothrombin time (P < 0.005), aspartate transaminase (P < 0.005), and creatinine (P < 0.05) were higher in the 20-methylcholanthrene group compared to the phenobarbitone group. Histological changes were marked in the 20-methylcholanthrene group with massive coagulative hepatic necrosis compared to minimal histological damage in the phenobarbitone group.\n\n\nCONCLUSION\nThe induction with 20-methylcholanthrene, glutathione depletion with buthionine sulfoxime, and subcutaneous administration of acetaminophen have led to the development of an animal model that parallels clinical, biochemical, and histological features of human hepatic failure.","PeriodicalId":191568,"journal":{"name":"The Journal of surgical research","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of surgical research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/JSRE.2002.6476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
BACKGROUND
Few reliable and reproducible animal models of acute hepatic failure exist or conform to the criteria proposed by Terblanche and Hickman (Dig. Dis. Sci. 36: 770, 1991). In this prospective randomized study we describe the selective induction of CYP450 enzymes, depletion of glutathione, and hepatotoxic insult using acetaminophen in the development and characterization of a novel rabbit model of acute hepatic failure.
MATERIALS AND METHODS
Male New Zealand white rabbits weighing 3-5 kg were used. After preliminary dose ranging experiments, two groups of New Zealand white (n = 8 in each group) rabbits had CYP450 induction with phenobarbitone (40 mg/kg ip for 5 days) or with 20-methylcholanthrene (80 mg/kg ip). The glutathione synthetase inhibitor buthionine sulfoxime (2 mmol/kg iv) was then administered prior to acetaminophen administration (500 mg/kg sc). Clinical observations were recorded and arterial blood was sampled over 72 h.
RESULTS
Grade I-III encephalopathy occurred at 5-12, 12-25, and 28-56 h, respectively, in animals pretreated with 20-methylcholanthrene, but not in the phenobarbitone pretreated group. Mortality was 75% in the 20-methylcholanthrene group compared to 0% in the phenobarbitone group. Blood lactate (P < 0.05), prothrombin time (P < 0.005), aspartate transaminase (P < 0.005), and creatinine (P < 0.05) were higher in the 20-methylcholanthrene group compared to the phenobarbitone group. Histological changes were marked in the 20-methylcholanthrene group with massive coagulative hepatic necrosis compared to minimal histological damage in the phenobarbitone group.
CONCLUSION
The induction with 20-methylcholanthrene, glutathione depletion with buthionine sulfoxime, and subcutaneous administration of acetaminophen have led to the development of an animal model that parallels clinical, biochemical, and histological features of human hepatic failure.