{"title":"Policy anomaly detection for distributed IPv6 firewalls","authors":"Claas Lorenz, Bettina Schnor","doi":"10.5220/0005517402100219","DOIUrl":null,"url":null,"abstract":"Concerning the design of a security architecture, Firewalls play a central role to secure computer networks. Facing the migration of IPv4 to IPv6, the setup of capable firewalls and network infrastructures will be necessary. The semantic differences between IPv4 and IPv6 make misconfigurations possible that may cause a lower performance or even security problems. For example, a cycle in a firewall configuration allows an attacker to craft network packets that may result in a Denial of Service. This paper investigates model checking techniques for automated policy anomaly detection. It shows that with a few adoptions existing approaches can be extended to support the IPv6 protocol with its specialities like the tremendously larger address space or extension headers. The performance is evaluated empirically by measurements with our prototype implementation ad6.","PeriodicalId":446861,"journal":{"name":"2015 12th International Joint Conference on e-Business and Telecommunications (ICETE)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th International Joint Conference on e-Business and Telecommunications (ICETE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005517402100219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Concerning the design of a security architecture, Firewalls play a central role to secure computer networks. Facing the migration of IPv4 to IPv6, the setup of capable firewalls and network infrastructures will be necessary. The semantic differences between IPv4 and IPv6 make misconfigurations possible that may cause a lower performance or even security problems. For example, a cycle in a firewall configuration allows an attacker to craft network packets that may result in a Denial of Service. This paper investigates model checking techniques for automated policy anomaly detection. It shows that with a few adoptions existing approaches can be extended to support the IPv6 protocol with its specialities like the tremendously larger address space or extension headers. The performance is evaluated empirically by measurements with our prototype implementation ad6.