How to identify information bias due to self-reporting in epidemiological research

L. Fadnes, A. Taube, T. Tylleskär
{"title":"How to identify information bias due to self-reporting in epidemiological research","authors":"L. Fadnes, A. Taube, T. Tylleskär","doi":"10.5580/1818","DOIUrl":null,"url":null,"abstract":"Reality can be distorted in many ways when seen through a questionnaire or an interview. Such distortions may be systematic, introducing bias. Bias can spoil research by indicating false associations or failing to detect true relationships. It is practically impossible to eliminate measurement errors totally, but estimating the extent of disagreement and assessing whether the errors are systematic should be a priority in epidemiological research. The aim of this article is pedagogically oriented. Through Medline searches and cross-references, 1400 articles were identified, of which 53 were chosen. This review gives an overview of information bias, focusing on recall period, selective recall, social desirability, interview situation and interviewing tools, question phrasing, alternative answers and digit preference. We use a problem identification approach and also present some possible solutions, exemplifying the different topics by research conducted in the fields of HIV-AIDS, nutrition and alcohol abuse. Methods for measuring bias are presented.","PeriodicalId":247354,"journal":{"name":"The Internet Journal of Epidemiology","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Internet Journal of Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5580/1818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

Abstract

Reality can be distorted in many ways when seen through a questionnaire or an interview. Such distortions may be systematic, introducing bias. Bias can spoil research by indicating false associations or failing to detect true relationships. It is practically impossible to eliminate measurement errors totally, but estimating the extent of disagreement and assessing whether the errors are systematic should be a priority in epidemiological research. The aim of this article is pedagogically oriented. Through Medline searches and cross-references, 1400 articles were identified, of which 53 were chosen. This review gives an overview of information bias, focusing on recall period, selective recall, social desirability, interview situation and interviewing tools, question phrasing, alternative answers and digit preference. We use a problem identification approach and also present some possible solutions, exemplifying the different topics by research conducted in the fields of HIV-AIDS, nutrition and alcohol abuse. Methods for measuring bias are presented.
如何识别流行病学研究中自我报告的信息偏差
从问卷调查或面试的角度来看,现实在很多方面都是扭曲的。这种扭曲可能是系统性的,会带来偏见。偏见可以通过指出错误的关联或未能发现真正的关系来破坏研究。完全消除测量误差实际上是不可能的,但估计误差的程度和评估误差是否系统性应该是流行病学研究的重点。本文的目的是教学导向。通过Medline检索和交叉参考,确定了1400篇文章,其中53篇被选中。本文综述了信息偏倚的研究进展,主要包括回忆期、选择性回忆、社会期望、访谈情境和访谈工具、问题措辞、备选答案和数字偏好。我们采用问题识别方法,并提出一些可能的解决办法,通过在艾滋病毒-艾滋病、营养和酗酒领域进行的研究举例说明不同的主题。给出了测量偏置的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信