Spectral partitioning of random graphs

Frank McSherry
{"title":"Spectral partitioning of random graphs","authors":"Frank McSherry","doi":"10.1109/SFCS.2001.959929","DOIUrl":null,"url":null,"abstract":"Problems such as bisection, graph coloring, and clique are generally believed hard in the worst case. However, they can be solved if the input data is drawn randomly from a distribution over graphs containing acceptable solutions. In this paper we show that a simple spectral algorithm can solve all three problems above in the average case, as well as a more general problem of partitioning graphs based on edge density. In nearly all cases our approach meets or exceeds previous parameters, while introducing substantial generality. We apply spectral techniques, using foremost the observation that in all of these problems, the expected adjacency matrix is a low rank matrix wherein the structure of the solution is evident.","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"643","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 643

Abstract

Problems such as bisection, graph coloring, and clique are generally believed hard in the worst case. However, they can be solved if the input data is drawn randomly from a distribution over graphs containing acceptable solutions. In this paper we show that a simple spectral algorithm can solve all three problems above in the average case, as well as a more general problem of partitioning graphs based on edge density. In nearly all cases our approach meets or exceeds previous parameters, while introducing substantial generality. We apply spectral techniques, using foremost the observation that in all of these problems, the expected adjacency matrix is a low rank matrix wherein the structure of the solution is evident.
随机图的谱划分
在最坏的情况下,诸如分割、图形着色和团块等问题通常被认为是困难的。然而,如果输入数据是从包含可接受解的图形分布中随机抽取的,则可以解决这些问题。在本文中,我们证明了一个简单的谱算法可以在平均情况下解决上述三个问题,以及更一般的基于边缘密度划分图的问题。在几乎所有情况下,我们的方法满足或超过了前面的参数,同时引入了实质性的普遍性。我们应用谱技术,首先观察到,在所有这些问题中,预期邻接矩阵是一个低秩矩阵,其中解的结构是明显的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信